24Sureshkumar's picture
Update app.py
c3b581c verified
raw
history blame
5.54 kB
import streamlit as st
import torch
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM
from diffusers import StableDiffusionPipeline
from rouge_score import rouge_scorer
from PIL import Image
import clip
import tempfile
import os
import math
import time
# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
# Translation model
translator_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt").to(device)
translator_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator_tokenizer.src_lang = "ta_IN"
# GPT-2 for creative text
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
# Stable Diffusion v1.4
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-1-4",
torch_dtype=torch.float32,
use_auth_token=os.getenv("HF_TOKEN") # set this on Hugging Face Spaces
).to(device)
pipe.safety_checker = None # Optional
# Load CLIP for image-text similarity
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
# Translation function
def translate_tamil_to_english(text, reference=None):
start = time.time()
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
outputs = translator_model.generate(
**inputs,
forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
)
translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
duration = round(time.time() - start, 2)
rouge_l = None
if reference:
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
score = scorer.score(reference.lower(), translated.lower())
rouge_l = round(score["rougeL"].fmeasure, 4)
return translated, duration, rouge_l
# Text generation with repetition & perplexity
def generate_creative_text(prompt, max_length=100):
start = time.time()
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
output = gen_model.generate(
input_ids, max_length=max_length,
do_sample=True, top_k=50, temperature=0.9
)
text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
duration = round(time.time() - start, 2)
tokens = text.split()
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)
# Perplexity
with torch.no_grad():
outputs = gen_model(input_ids, labels=input_ids)
loss = outputs.loss
perplexity = math.exp(loss.item())
return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 3)
# Image generation + CLIP similarity
def generate_image(prompt):
try:
start = time.time()
result = pipe(prompt)
image = result.images[0].resize((256, 256))
duration = round(time.time() - start, 2)
# Save image
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
image.save(tmp_file.name)
# CLIP similarity
image_input = clip_preprocess(image).unsqueeze(0).to(device)
text_input = clip.tokenize(prompt).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_input)
text_features = clip_model.encode_text(text_input)
similarity = torch.cosine_similarity(image_features, text_features).item()
return tmp_file.name, duration, round(similarity, 4)
except Exception as e:
return None, 0, f"Image generation failed: {str(e)}"
# Streamlit UI
st.set_page_config(page_title="Tamil β†’ English + AI Art", layout="centered")
st.title("🧠 Tamil β†’ English + 🎨 Creative Text + AI Image")
tamil_input = st.text_area("✍️ Enter Tamil text here", height=150)
reference_input = st.text_input("πŸ“˜ Optional: Reference English translation for ROUGE")
if st.button("πŸš€ Generate Output"):
if not tamil_input.strip():
st.warning("Please enter Tamil text.")
else:
with st.spinner("πŸ”„ Translating Tamil to English..."):
english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)
st.success(f"βœ… Translated in {t_time} seconds")
st.markdown(f"**πŸ“ English Translation:** `{english_text}`")
if rouge_l is not None:
st.markdown(f"πŸ“Š **ROUGE-L Score:** `{rouge_l}`")
with st.spinner("πŸ–ΌοΈ Generating image..."):
image_path, img_time, similarity = generate_image(english_text)
if isinstance(similarity, float):
st.success(f"πŸ–ΌοΈ Image generated in {img_time} seconds")
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
st.markdown(f"🎯 **CLIP Text-Image Similarity:** `{similarity}`")
else:
st.error(similarity)
with st.spinner("πŸ’‘ Generating creative text..."):
creative, c_time, tokens, rep_rate, perplexity = generate_creative_text(english_text)
st.success(f"✨ Creative text generated in {c_time} seconds")
st.markdown(f"**🧠 Creative Output:** `{creative}`")
st.markdown(f"πŸ“Œ Tokens: `{tokens}`, πŸ” Repetition Rate: `{rep_rate}`")
st.markdown(f"πŸ“‰ Perplexity: `{perplexity}`")
st.markdown("---")
st.caption("Built by Sureshkumar R using MBart, GPT-2 & Stable Diffusion on Hugging Face")