Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,38 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
3 |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
from rouge_score import rouge_scorer
|
7 |
-
from PIL import Image
|
8 |
-
import tempfile
|
9 |
-
import os
|
10 |
-
import time
|
11 |
-
from transformers import CLIPProcessor, CLIPModel
|
12 |
-
import torch.nn.functional as F
|
13 |
|
14 |
-
#
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
|
17 |
-
# Load
|
18 |
-
translator_model = MBartForConditionalGeneration.from_pretrained(
|
19 |
-
|
20 |
-
).to(device)
|
21 |
-
translator_tokenizer = MBart50TokenizerFast.from_pretrained(
|
22 |
-
"facebook/mbart-large-50-many-to-many-mmt"
|
23 |
-
)
|
24 |
translator_tokenizer.src_lang = "ta_IN"
|
25 |
|
26 |
-
# Load GPT-2 for creative text
|
27 |
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
28 |
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
|
29 |
gen_model.eval()
|
30 |
|
31 |
-
|
32 |
-
pipe =
|
33 |
-
"stabilityai/stable-diffusion-1-5",
|
34 |
-
torch_dtype=torch.float32,
|
35 |
-
).to(device)
|
36 |
-
pipe.safety_checker = None # Optional: disable safety filter
|
37 |
|
38 |
-
# Load CLIP model
|
39 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
|
40 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
41 |
|
42 |
-
# ---
|
43 |
def translate_tamil_to_english(text, reference=None):
|
44 |
start = time.time()
|
45 |
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
|
46 |
-
outputs = translator_model.generate(
|
47 |
-
**inputs,
|
48 |
-
forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
|
49 |
-
)
|
50 |
translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
51 |
duration = round(time.time() - start, 2)
|
52 |
|
@@ -58,7 +44,6 @@ def translate_tamil_to_english(text, reference=None):
|
|
58 |
|
59 |
return translated, duration, rouge_l
|
60 |
|
61 |
-
# --- GPT-2 Creative Generation ---
|
62 |
def generate_creative_text(prompt, max_length=100):
|
63 |
start = time.time()
|
64 |
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
|
@@ -67,9 +52,8 @@ def generate_creative_text(prompt, max_length=100):
|
|
67 |
duration = round(time.time() - start, 2)
|
68 |
|
69 |
tokens = text.split()
|
70 |
-
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)
|
71 |
|
72 |
-
# Perplexity
|
73 |
with torch.no_grad():
|
74 |
input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
|
75 |
outputs = gen_model(input_ids, labels=input_ids)
|
@@ -78,7 +62,6 @@ def generate_creative_text(prompt, max_length=100):
|
|
78 |
|
79 |
return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 4)
|
80 |
|
81 |
-
# --- Stable Diffusion Image Generation ---
|
82 |
def generate_image(prompt):
|
83 |
try:
|
84 |
start = time.time()
|
@@ -91,7 +74,6 @@ def generate_image(prompt):
|
|
91 |
except Exception as e:
|
92 |
return None, 0, f"Image generation failed: {str(e)}"
|
93 |
|
94 |
-
# --- CLIP Similarity ---
|
95 |
def evaluate_clip_similarity(text, image):
|
96 |
inputs = clip_processor(text=[text], images=image, return_tensors="pt", padding=True).to(device)
|
97 |
with torch.no_grad():
|
@@ -112,7 +94,7 @@ if st.button("π Generate Output"):
|
|
112 |
if not tamil_input.strip():
|
113 |
st.warning("Please enter Tamil text.")
|
114 |
else:
|
115 |
-
with st.spinner("π Translating..."):
|
116 |
english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)
|
117 |
|
118 |
st.success(f"β
Translated in {t_time}s")
|
@@ -120,7 +102,7 @@ if st.button("π Generate Output"):
|
|
120 |
if rouge_l is not None:
|
121 |
st.markdown(f"π ROUGE-L Score: `{rouge_l}`")
|
122 |
|
123 |
-
with st.spinner("
|
124 |
image_path, img_time, image_obj = generate_image(english_text)
|
125 |
|
126 |
if isinstance(image_obj, Image.Image):
|
@@ -129,16 +111,16 @@ if st.button("π Generate Output"):
|
|
129 |
|
130 |
with st.spinner("π Evaluating CLIP similarity..."):
|
131 |
clip_score = evaluate_clip_similarity(english_text, image_obj)
|
132 |
-
st.markdown(f"
|
133 |
else:
|
134 |
st.error(image_obj)
|
135 |
|
136 |
with st.spinner("π‘ Generating creative text..."):
|
137 |
creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)
|
138 |
|
139 |
-
st.success(f"β¨ Creative text
|
140 |
st.markdown(f"**π§ Creative Output:** `{creative}`")
|
141 |
st.markdown(f"π Tokens: `{tokens}`, π Repetition Rate: `{rep_rate}`, π Perplexity: `{ppl}`")
|
142 |
|
143 |
st.markdown("---")
|
144 |
-
st.caption("Built by Sureshkumar R
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
import tempfile
|
7 |
+
from PIL import Image
|
8 |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, CLIPProcessor, CLIPModel
|
10 |
from diffusers import StableDiffusionPipeline
|
11 |
from rouge_score import rouge_scorer
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# --- Device Setup ---
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
|
16 |
+
# --- Load Models ---
|
17 |
+
translator_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt").to(device)
|
18 |
+
translator_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
|
|
|
|
|
|
|
|
19 |
translator_tokenizer.src_lang = "ta_IN"
|
20 |
|
|
|
21 |
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
22 |
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
|
23 |
gen_model.eval()
|
24 |
|
25 |
+
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-1-5").to(device)
|
26 |
+
pipe.safety_checker = None
|
|
|
|
|
|
|
|
|
27 |
|
|
|
28 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
|
29 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
30 |
|
31 |
+
# --- Functions ---
|
32 |
def translate_tamil_to_english(text, reference=None):
|
33 |
start = time.time()
|
34 |
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
|
35 |
+
outputs = translator_model.generate(**inputs, forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"])
|
|
|
|
|
|
|
36 |
translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
37 |
duration = round(time.time() - start, 2)
|
38 |
|
|
|
44 |
|
45 |
return translated, duration, rouge_l
|
46 |
|
|
|
47 |
def generate_creative_text(prompt, max_length=100):
|
48 |
start = time.time()
|
49 |
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
|
|
|
52 |
duration = round(time.time() - start, 2)
|
53 |
|
54 |
tokens = text.split()
|
55 |
+
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens) if len(tokens) > 1 else 0
|
56 |
|
|
|
57 |
with torch.no_grad():
|
58 |
input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
|
59 |
outputs = gen_model(input_ids, labels=input_ids)
|
|
|
62 |
|
63 |
return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 4)
|
64 |
|
|
|
65 |
def generate_image(prompt):
|
66 |
try:
|
67 |
start = time.time()
|
|
|
74 |
except Exception as e:
|
75 |
return None, 0, f"Image generation failed: {str(e)}"
|
76 |
|
|
|
77 |
def evaluate_clip_similarity(text, image):
|
78 |
inputs = clip_processor(text=[text], images=image, return_tensors="pt", padding=True).to(device)
|
79 |
with torch.no_grad():
|
|
|
94 |
if not tamil_input.strip():
|
95 |
st.warning("Please enter Tamil text.")
|
96 |
else:
|
97 |
+
with st.spinner("π Translating Tamil to English..."):
|
98 |
english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)
|
99 |
|
100 |
st.success(f"β
Translated in {t_time}s")
|
|
|
102 |
if rouge_l is not None:
|
103 |
st.markdown(f"π ROUGE-L Score: `{rouge_l}`")
|
104 |
|
105 |
+
with st.spinner("πΌοΈ Generating image from text..."):
|
106 |
image_path, img_time, image_obj = generate_image(english_text)
|
107 |
|
108 |
if isinstance(image_obj, Image.Image):
|
|
|
111 |
|
112 |
with st.spinner("π Evaluating CLIP similarity..."):
|
113 |
clip_score = evaluate_clip_similarity(english_text, image_obj)
|
114 |
+
st.markdown(f"π **CLIP Text-Image Similarity:** `{clip_score}`")
|
115 |
else:
|
116 |
st.error(image_obj)
|
117 |
|
118 |
with st.spinner("π‘ Generating creative text..."):
|
119 |
creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)
|
120 |
|
121 |
+
st.success(f"β¨ Creative text in {c_time}s")
|
122 |
st.markdown(f"**π§ Creative Output:** `{creative}`")
|
123 |
st.markdown(f"π Tokens: `{tokens}`, π Repetition Rate: `{rep_rate}`, π Perplexity: `{ppl}`")
|
124 |
|
125 |
st.markdown("---")
|
126 |
+
st.caption("Built by Sureshkumar R | MBart + GPT-2 + Stable Diffusion + CLIP")
|