Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from huggingface_hub import login | |
import torch | |
import os | |
# Set model map | |
model_map = { | |
"FinGPT": "AI4Finance/FinGPT", | |
"FinanceConnect": "ceadar-ie/FinanceConnect-13B", | |
"Sujet-Finance": "sujet-ai/Sujet-Finance-8B-v0.1" | |
} | |
# Cache model loading for performance | |
def load_model_and_tokenizer(model_id): | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 | |
) | |
return model, tokenizer | |
# Query model | |
def query_model(model_id, question): | |
model, tokenizer = load_model_and_tokenizer(model_id) | |
inputs = tokenizer(question, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=150) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Streamlit app layout | |
st.title("💼 Financial LLM Evaluation Interface") | |
model_choice = st.selectbox("Select a Financial Model", list(model_map.keys())) | |
user_question = st.text_area("Enter your financial question:", "What is EBITDA?") | |
if st.button("Get Response"): | |
with st.spinner("Generating response..."): | |
try: | |
answer = query_model(model_map[model_choice], user_question) | |
st.subheader(f"Response from {model_choice}:") | |
st.write(answer) | |
except Exception as e: | |
st.error(f"Something went wrong: {e}") | |