Spaces:
Sleeping
Sleeping
File size: 14,216 Bytes
19caa3e e03b792 19caa3e e03b792 19caa3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import os
os.environ['HF_HOME'] = '/tmp'
import time
import streamlit as st
import pandas as pd
import io
import plotly.express as px
import zipfile
import json
from cryptography.fernet import Fernet
from streamlit_extras.stylable_container import stylable_container
from typing import Optional
from gliner import GLiNER
from comet_ml import Experiment
from transformers import pipeline
st.markdown(
"""
<style>
/* Main app background with a subtle rainbow gradient */
.stApp {
background: linear-gradient(135deg, #f0f8ff, #f5f0ff, #fff0f5);
color: #000000;
font-family: 'Inter', sans-serif;
}
/* Rainbow gradient for the sidebar */
.css-1d36184, .css-1d36184:hover, .css-1d36184:focus {
background: linear-gradient(180deg, #FFC0CB, #FFD700, #98FB98, #ADD8E6, #BA55D3);
secondary-background-color: #FFC080;
}
/* Expander background color with a slight transparency */
.streamlit-expanderContent {
background-color: rgba(255, 255, 255, 0.7);
border-radius: 10px;
}
/* Expander header with a gentle gradient and bold text */
.streamlit-expanderHeader {
background: linear-gradient(90deg, #FADADD, #FFF9E0, #E0FFF8);
border-radius: 10px;
font-weight: bold;
}
/* Text Area with a light background and subtle border */
.stTextArea textarea {
background-color: #FFF0F5;
color: #000000;
border: 1px solid #ccc;
border-radius: 8px;
}
/* Button with a solid color and elegant hover effect */
.stButton > button {
background-color: #FF69B4;
color: #FFFFFF;
font-weight: bold;
border-radius: 12px;
transition: all 0.2s ease-in-out;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.stButton > button:hover {
background-color: #FFB6C1;
box-shadow: 0 6px 8px rgba(0, 0, 0, 0.15);
transform: translateY(-2px);
}
/* Warning box with a soft orange and rounded corners */
.stAlert.st-warning {
background-color: #FFDDAA;
color: #000000;
border-radius: 10px;
border-left: 5px solid #FFA500;
}
/* Success box with a fresh green and rounded corners */
.stAlert.st-success {
background-color: #D4EDDA;
color: #155724;
border-radius: 10px;
border-left: 5px solid #28A745;
}
/* Custom CSS to make the title text rainbow-colored */
h1 {
background: linear-gradient(45deg, #FF69B4, #FFD700, #00FF7F, #00BFFF, #8A2BE2);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-size: 3em;
font-weight: 800;
}
</style>
""",
unsafe_allow_html=True
)
st.set_page_config(
layout="wide",
page_title="English Keyphrase"
)
# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
if not comet_initialized:
st.warning("Comet ML not initialized. Check environment variables.")
# --- UI Header and Notes ---
st.subheader("AcademiaMiner", divider="rainbow")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes*")
expander.write('''
**Named Entities:** This AcademiaMiner extracts keyphrases from English academic and scientific papers.
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
**Usage Limits:** You can request results unlimited times for one (1) month.
**Supported Languages:** English
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at [email protected]'''
)
with st.sidebar:
st.write("Use the following code to embed the AcademiaMiner web app on your website. Feel free to adjust the width and height values to fit your page.")
code = '''
<iframe
src="https://aiecosystem-business-core.hf.space"
frameborder="0"
width="850"
height="450"
></iframe>
'''
st.code(code, language="html")
st.text("")
st.text("")
st.divider()
st.subheader("π Ready to build your own NER Web App?", divider="rainbow")
st.link_button("NER Builder", "https://nlpblogs.com", type="primary")
@st.cache_resource
def load_ner_model():
"""Loads the GLiNER model and caches it."""
try:
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
except Exception as e:
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
st.stop()
model = load_ner_model()
@st.cache_resource
def load_ner_model():
return pipeline("token-classification",
model="ml6team/keyphrase-extraction-kbir-inspec",
aggregation_strategy="max",
stride=128,
ignore_labels=["O"])
model = load_ner_model()
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
def clear_text():
"""Clears the text area."""
st.session_state['my_text_area'] = ""
st.button("Clear text", on_click=clear_text)
if st.button("Results"):
start_time = time.time()
if not text.strip():
st.warning("Please enter some text to extract entities.")
else:
with st.spinner("Analyzing text...", show_time=True):
entities = model(text_for_ner)
data = []
if entities:
for entity in entities:
if all(k in entity for k in ['word', 'entity_group', 'score', 'start', 'end']):
data.append({
'word': entity['word'],
'entity_group': entity['entity_group'],
'score': entity['score'],
'start': entity['start'],
'end': entity['end']
})
else:
st.warning(f"Skipping malformed entity encountered: {entity}. Missing expected keys.")
df = pd.DataFrame(data)
else:
df = pd.DataFrame(columns=['word', 'entity_group', 'score', 'start', 'end'])
if not df.empty:
pattern = r'[^\w\s]'
df['word'] = df['word'].replace(pattern, '', regex=True)
df = df.replace('', 'Unknown')
st.subheader("All Extracted Keyphrases", divider="rainbow")
st.dataframe(df, use_container_width=True)
with st.expander("See Glossary of tags"):
st.write('''
**word**: ['entity extracted from your text data']
**score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
**entity_group**: ['label (tag) assigned to a given extracted entity']
**start**: ['index of the start of the corresponding entity']
**end**: ['index of the end of the corresponding entity']
''')
st.divider()
st.subheader("Most Frequent Keyphrases", divider="rainbow")
word_counts = df['word'].value_counts().reset_index()
word_counts.columns = ['word', 'count']
df_frequent = word_counts.sort_values(by='count', ascending=False).head(15)
if not df_frequent.empty:
tab1, tab2 = st.tabs(["Table", "Chart"])
with tab1:
st.dataframe(df_frequent, use_container_width=True)
with tab2:
fig_frequent_bar = px.bar(
df_frequent,
x='count',
y='word',
orientation='h',
title='Top Frequent Keyphrases by Count',
color='count',
color_continuous_scale=px.colors.sequential.Viridis
)
fig_frequent_bar.update_layout(yaxis={'categoryorder':'total ascending'})
st.plotly_chart(fig_frequent_bar, use_container_width=True)
if comet_initialized and 'experiment' in locals():
experiment.log_figure(figure=fig_frequent_bar, figure_name="frequent_keyphrases_bar_chart")
else:
st.info("No keyphrases found with more than one occurrence to display in tabs.")
st.divider()
experiment = None
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_source_type", source_type)
experiment.log_parameter("input_content_length", len(text_for_ner))
experiment.log_table("predicted_entities", df)
st.subheader("Treemap of All Keyphrases", divider="rainbow")
fig_treemap = px.treemap(
df,
path=[px.Constant("all"), 'entity_group', 'word'],
values='score',
color='word',
color_continuous_scale=px.colors.sequential.Plasma
)
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig_treemap, use_container_width=True)
if comet_initialized and experiment:
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
# --- Download Section ---
dfa = pd.DataFrame(
data={
'Column Name': ['word', 'entity_group', 'score', 'start', 'end'],
'Description': [
'entity extracted from your text data',
'label (tag) assigned to a given extracted entity',
'accuracy score; how accurately a tag has been assigned to a given entity',
'index of the start of the corresponding entity',
'index of the end of the corresponding entity'
]
}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
if not df.empty:
myzip.writestr("Summary_of_results.csv", df.to_csv(index=False))
myzip.writestr("Most_frequent_keyphrases.csv", df_frequent.to_csv(index=False))
myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="nlpblogs_ner_results.zip",
mime="application/zip",
)
st.divider()
else:
st.warning("No entities found to generate visualizations.")
else:
st.warning("No meaningful text found to process. Please enter a URL, upload a text file, or type/paste text.")
except Exception as e:
st.error(f"An unexpected error occurred during processing: {e}")
finally:
if comet_initialized and experiment is not None:
try:
experiment.end()
except Exception as comet_e:
st.warning(f"Comet ML experiment.end() failed: {comet_e}")
if start_time_overall is not None:
end_time_overall = time.time()
elapsed_time_overall = end_time_overall - start_time_overall
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
st.write(f"Number of times you requested results: **{st.session_state['source_type_attempts']}/{max_attempts}**")
else:
st.warning("Please enter some text, a URL, or upload a file to analyze.") |