File size: 19,667 Bytes
e16f3db 17f7ba5 38d7111 17f7ba5 38d7111 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 17f7ba5 38d7111 17f7ba5 38d7111 17f7ba5 e16f3db 17f7ba5 38d7111 17f7ba5 38d7111 17f7ba5 38d7111 17f7ba5 38d7111 17f7ba5 38d7111 17f7ba5 e16f3db 17f7ba5 e16f3db 17f7ba5 e16f3db 17f7ba5 e16f3db 17f7ba5 e16f3db 38d7111 17f7ba5 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 17f7ba5 e16f3db 38d7111 e16f3db 38d7111 e16f3db 38d7111 17f7ba5 e16f3db 38d7111 17f7ba5 38d7111 e16f3db 17f7ba5 e16f3db 17f7ba5 e16f3db 17f7ba5 38d7111 17f7ba5 e16f3db 17f7ba5 e16f3db 38d7111 501f0bd e16f3db 501f0bd 38d7111 501f0bd e16f3db 501f0bd 38d7111 501f0bd e16f3db 501f0bd e16f3db 501f0bd e16f3db 501f0bd e16f3db 501f0bd e16f3db 501f0bd 17f7ba5 501f0bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import requests
import streamlit as st
from bs4 import BeautifulSoup
import pandas as pd
from transformers import pipeline
import plotly.express as px
import time
import io
import os
import zipfile
import re
import json
from cryptography.fernet import Fernet
from streamlit_extras.stylable_container import stylable_container
from comet_ml import Experiment
st.set_page_config(
layout="wide",
page_title="English Keyphrase TXT & URL Entity Finder"
)
# --- Configuration for Comet ML ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = False
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
comet_initialized = True
# --- Persistent Counter & History Configuration ---
PERSISTENCE_FILE = "app_data.json"
max_attempts = 10
def load_persistent_data():
"""
Loads the attempts count and file upload history from a persistent JSON file.
Returns default values if the file doesn't exist or is invalid.
"""
if os.path.exists(PERSISTENCE_FILE):
try:
with open(PERSISTENCE_FILE, "r") as f:
data = json.load(f)
return data.get('source_type_attempts', 0), data.get('file_upload_history', [])
except (json.JSONDecodeError, KeyError):
st.warning("Warning: Could not read persistent data file. Starting with a fresh state.")
return 0, []
return 0, []
def save_persistent_data(attempts, history):
"""
Saves the current attempts count and file upload history to the persistent JSON file.
"""
with open(PERSISTENCE_FILE, "w") as f:
json.dump({'source_type_attempts': attempts, 'file_upload_history': history}, f, indent=4)
def clear_input_history_and_rerun():
"""Callback function for the "Clear Input History" button."""
st.session_state['file_upload_history'] = []
save_persistent_data(st.session_state['source_type_attempts'], [])
st.experimental_rerun()
# --- Initialize session state for attempts and encrypted text ---
if 'source_type_attempts' not in st.session_state:
attempts, history = load_persistent_data()
st.session_state['source_type_attempts'] = attempts
st.session_state['file_upload_history'] = history
if 'encrypted_text_to_process' not in st.session_state:
st.session_state['encrypted_text_to_process'] = None
if 'uploaded_file_content' not in st.session_state:
st.session_state['uploaded_file_content'] = None
if 'file_uploader_key' not in st.session_state:
st.session_state['file_uploader_key'] = 0
# --- Fernet Encryption Setup ---
@st.cache_resource
def load_encryption_key():
try:
key_str = os.environ.get("FERNET_KEY")
if not key_str:
raise ValueError("FERNET_KEY environment variable not set. Cannot perform encryption/decryption.")
key_bytes = key_str.encode('utf-8')
return Fernet(key_bytes)
except ValueError as ve:
st.error(f"Configuration Error: {ve}. Please ensure the 'FERNET_KEY' environment variable is set securely.")
st.stop()
except Exception as e:
st.error(f"An unexpected error occurred while loading encryption key: {e}. Please check your key format and environment settings.")
st.stop()
# Initialize the Fernet cipher instance globally (cached)
fernet = load_encryption_key()
def encrypt_text(text_content: str) -> bytes:
"""Encrypts a string using the loaded Fernet cipher."""
return fernet.encrypt(text_content.encode('utf-8'))
def decrypt_text(encrypted_bytes: bytes) -> str | None:
"""
Decrypts bytes using the loaded Fernet cipher.
Returns the decrypted string, or None if decryption fails.
"""
try:
return fernet.decrypt(encrypted_bytes).decode('utf-8')
except Exception as e:
st.error(f"Decryption failed. This might indicate data tampering or an incorrect encryption key. Error: {e}")
return None
# --- UI Header and Notes ---
st.subheader("English Keyphrase TXT & URL Entity Finder", divider="rainbow")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes on the English Keyphrase TXT & URL Entity Finder**")
expander.write('''
**Named Entities:** This English Keyphrase TXT & URL Entity Finder extracts keyphrases from English academic and scientific papers.
Results are presented in an easy-to-read table, visualized in an interactive bar chart and tree map, and are available for download along with a Glossary of tags.
**How to Use:**
1. Paste a URL and press Enter.
2. Alternatively, type or paste text directly into the text area and press Ctrl + Enter.
3. Or, upload your TXT file.
**Usage Limits:** You can request results up to 10 times.
**Customization:** To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at [email protected]
''')
# --- Sidebar Content ---
with st.sidebar:
container = st.container(border=True)
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
st.subheader("Persistent Data", divider="rainbow")
st.info(f"Requests remaining today: **{max_attempts - st.session_state['source_type_attempts']}**")
if st.session_state['file_upload_history']:
st.subheader("File & URL History", divider="rainbow")
history_df = pd.DataFrame(st.session_state['file_upload_history'])
st.dataframe(history_df, use_container_width=True, hide_index=True)
st.button("Clear Input History", on_click=clear_input_history_and_rerun, type="secondary")
st.subheader("Related NER Web Apps", divider="rainbow")
st.link_button("Scandinavian JSON Entity Finder", "https://nlpblogs.com/shop/named-entity-recognition-ner/scandinavian-json-entity-finder/", type="primary")
# --- Input Fields ---
def clear_inputs():
st.session_state.url = ""
st.session_state.my_text_area = ""
st.session_state['uploaded_file_content'] = None
st.session_state['encrypted_text_to_process'] = None
st.session_state['file_uploader_key'] += 1
st.experimental_rerun()
url = st.text_input("Enter URL from the internet, and then press Enter:", key="url")
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
uploaded_file = st.file_uploader("Or upload a .txt file", type=["txt"], key=f"file_uploader_{st.session_state['file_uploader_key']}")
st.button("Clear All Inputs", on_click=clear_inputs)
source_type = None
current_run_text = None
if uploaded_file is not None and st.session_state.get('uploaded_file_content') is None:
source_type = 'file'
try:
string_data = io.StringIO(uploaded_file.getvalue().decode("utf-8")).read()
current_run_text = string_data
st.session_state['uploaded_file_content'] = current_run_text
st.session_state['file_upload_history'].append({
'source_type': 'file',
'filename': uploaded_file.name,
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
})
save_persistent_data(st.session_state['source_type_attempts'], st.session_state['file_upload_history'])
st.success("TXT file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
st.divider()
st.write("**Input text content (from uploaded file)**")
st.write(current_run_text[:500] + "..." if len(current_run_text) > 500 else current_run_text)
except Exception as e:
st.error(f"Error processing uploaded file: {e}")
current_run_text = None
elif url:
source_type = 'url'
if not url.startswith(("http://", "https://")):
st.error("Please enter a valid URL starting with 'http://' or 'https://'.")
current_run_text = None
else:
try:
with st.spinner(f"Fetching and parsing content from **{url}**...", show_time=True):
f = requests.get(url, timeout=10)
f.raise_for_status()
soup = BeautifulSoup(f.text, 'html.parser')
current_run_text = soup.get_text(separator=' ', strip=True)
st.session_state['file_upload_history'].append({
'source_type': 'url',
'filename': url,
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
})
save_persistent_data(st.session_state['source_type_attempts'], st.session_state['file_upload_history'])
st.divider()
st.write("**Input text content (from URL)**")
st.write(current_run_text[:500] + "..." if len(current_run_text) > 500 else current_run_text)
except Exception as e:
st.error(f"Error fetching or parsing URL: {e}")
current_run_text = None
elif text:
source_type = 'text'
current_run_text = text
st.divider()
st.write("**Input text content (from text area)**")
st.write(current_run_text[:500] + "..." if len(current_run_text) > 500 else current_run_text)
if current_run_text and current_run_text.strip():
if st.session_state.get('encrypted_text_to_process') is None:
st.session_state['encrypted_text_to_process'] = encrypt_text(current_run_text)
else:
st.session_state['encrypted_text_to_process'] = None
if uploaded_file is None:
st.session_state['uploaded_file_content'] = None
st.session_state['file_uploader_key'] += 1
# --- Main Processing Logic (corrected placement) ---
# The button must be outside the conditional logic that populates the session state
# so that it is always rendered and can be clicked to trigger the analysis.
if st.button("Analyze Text", type="primary"):
if st.session_state['encrypted_text_to_process']:
try:
start_time_overall = time.time()
if st.session_state['source_type_attempts'] >= max_attempts:
st.error(f"You have requested results {max_attempts} times. You have reached your request limit.")
st.stop()
st.session_state['source_type_attempts'] += 1
save_persistent_data(st.session_state['source_type_attempts'], st.session_state['file_upload_history'])
@st.cache_resource
def load_ner_model():
return pipeline("token-classification",
model="ml6team/keyphrase-extraction-kbir-inspec",
aggregation_strategy="max",
stride=128,
ignore_labels=["O"])
model = load_ner_model()
text_for_ner = decrypt_text(st.session_state['encrypted_text_to_process'])
if text_for_ner and len(text_for_ner.strip()) > 0:
with st.spinner("Analyzing text...", show_time=True):
entities = model(text_for_ner)
data = []
if entities:
for entity in entities:
if all(k in entity for k in ['word', 'entity_group', 'score', 'start', 'end']):
data.append({
'word': entity['word'],
'entity_group': entity['entity_group'],
'score': entity['score'],
'start': entity['start'],
'end': entity['end']
})
else:
st.warning(f"Skipping malformed entity encountered: {entity}. Missing expected keys.")
df = pd.DataFrame(data)
else:
df = pd.DataFrame(columns=['word', 'entity_group', 'score', 'start', 'end'])
if not df.empty:
pattern = r'[^\w\s]'
df['word'] = df['word'].replace(pattern, '', regex=True)
df = df.replace('', 'Unknown')
st.subheader("All Extracted Keyphrases", divider="rainbow")
st.dataframe(df, use_container_width=True)
with st.expander("See Glossary of tags"):
st.write('''
**word**: ['entity extracted from your text data']
**score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
**entity_group**: ['label (tag) assigned to a given extracted entity']
**start**: ['index of the start of the corresponding entity']
**end**: ['index of the end of the corresponding entity']
''')
st.divider()
st.subheader("Most Frequent Keyphrases", divider="rainbow")
word_counts = df['word'].value_counts().reset_index()
word_counts.columns = ['word', 'count']
df_frequent = word_counts.sort_values(by='count', ascending=False).head(15)
if not df_frequent.empty:
tab1, tab2 = st.tabs(["Table", "Chart"])
with tab1:
st.dataframe(df_frequent, use_container_width=True)
with tab2:
fig_frequent_bar = px.bar(
df_frequent,
x='count',
y='word',
orientation='h',
title='Top Frequent Keyphrases by Count',
color='count',
color_continuous_scale=px.colors.sequential.Viridis
)
fig_frequent_bar.update_layout(yaxis={'categoryorder':'total ascending'})
st.plotly_chart(fig_frequent_bar, use_container_width=True)
if comet_initialized and 'experiment' in locals():
experiment.log_figure(figure=fig_frequent_bar, figure_name="frequent_keyphrases_bar_chart")
else:
st.info("No keyphrases found with more than one occurrence to display in tabs.")
st.divider()
experiment = None
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_source_type", source_type)
experiment.log_parameter("input_content_length", len(text_for_ner))
experiment.log_table("predicted_entities", df)
st.subheader("Treemap of All Keyphrases", divider="rainbow")
fig_treemap = px.treemap(
df,
path=[px.Constant("all"), 'entity_group', 'word'],
values='score',
color='word',
color_continuous_scale=px.colors.sequential.Plasma
)
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig_treemap, use_container_width=True)
if comet_initialized and experiment:
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
# --- Download Section ---
dfa = pd.DataFrame(
data={
'Column Name': ['word', 'entity_group', 'score', 'start', 'end'],
'Description': [
'entity extracted from your text data',
'label (tag) assigned to a given extracted entity',
'accuracy score; how accurately a tag has been assigned to a given entity',
'index of the start of the corresponding entity',
'index of the end of the corresponding entity'
]
}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
if not df.empty:
myzip.writestr("Summary_of_results.csv", df.to_csv(index=False))
myzip.writestr("Most_frequent_keyphrases.csv", df_frequent.to_csv(index=False))
myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="nlpblogs_ner_results.zip",
mime="application/zip",
)
st.divider()
else:
st.warning("No entities found to generate visualizations.")
else:
st.warning("No meaningful text found to process. Please enter a URL, upload a text file, or type/paste text.")
except Exception as e:
st.error(f"An unexpected error occurred during processing: {e}")
finally:
if comet_initialized and experiment is not None:
try:
experiment.end()
except Exception as comet_e:
st.warning(f"Comet ML experiment.end() failed: {comet_e}")
if start_time_overall is not None:
end_time_overall = time.time()
elapsed_time_overall = end_time_overall - start_time_overall
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
st.write(f"Number of times you requested results: **{st.session_state['source_type_attempts']}/{max_attempts}**")
else:
st.warning("Please enter some text, a URL, or upload a file to analyze.") |