File size: 16,705 Bytes
67a9d8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import time
import streamlit as st
import pandas as pd
import io
from streamlit_extras.stylable_container import stylable_container
import plotly.express as px
import zipfile
import os
import re
import numpy as np
from cryptography.fernet import Fernet
from gliner import GLiNER
from PyPDF2 import PdfReader
import docx
from comet_ml import Experiment
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
# --- Configuration ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = False
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
comet_initialized = True
# --- Initialize session state ---
if 'file_upload_attempts' not in st.session_state:
st.session_state['file_upload_attempts'] = 0
if 'encrypted_extracted_text' not in st.session_state:
st.session_state['encrypted_extracted_text'] = None
max_attempts = 10
GLINER_LABELS = ["Person", "Organization", "Phone number", "Address", "Passport number",
"Email", "Credit card number", "Social security number", "Health insurance ID number",
"Date of birth", "Mobile phone number", "Bank account number", "Medication", "CPF",
"Driver license number", "Tax identification number", "Medical condition",
"Identity card number", "National ID number", "IP address", "IBAN",
"Credit card expiration date", "Username", "Health insurance number",
"Registration number", "Student ID number", "Insurance number", "Flight number",
"Landline phone number", "Blood type", "CVV", "Reservation number",
"Digital signature", "Social media handle", "License plate number",
"CNPJ", "Postal code", "Passport_number", "Serial number", "Vehicle registration number",
"Credit card brand", "Fax number", "Visa number", "Insurance company", "Identity document number",
"Transaction number", "National health insurance number", "CVC", "Birth certificate number",
"Train ticket number", "Passport expiration date", "Social_security_number"]
@st.cache_resource
def load_ner_model():
"""
Loads the pre-trained GLiNER NER model (urchade/gliner_multi_pii-v1) and caches it.
This model is suitable for a wide range of custom entity types.
"""
try:
return GLiNER.from_pretrained("urchade/gliner_multi_pii-v1")
except Exception as e:
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
st.stop()
@st.cache_resource
def load_encryption_key():
"""
Loads the Fernet encryption key from environment variables.
This key is crucial for encrypting/decrypting sensitive data.
It's cached as a resource to be loaded only once.
"""
try:
# Get the key string from environment variables
key_str = os.environ.get("FERNET_KEY")
if not key_str:
raise ValueError("FERNET_KEY environment variable not set. Cannot perform encryption/decryption.")
# Fernet key must be bytes, so encode the string
key_bytes = key_str.encode('utf-8')
return Fernet(key_bytes)
except ValueError as ve:
st.error(f"Configuration Error: {ve}. Please ensure the 'FERNET_KEY' environment variable is set securely in your deployment environment (e.g., Hugging Face Spaces secrets, Render environment variables) or in a local .env file for development.")
st.stop() # Stop the app if the key is not found, as security is compromised
except Exception as e:
st.error(f"An unexpected error occurred while loading encryption key: {e}. Please check your key format and environment settings.")
st.stop()
# Initialize the Fernet cipher instance globally (cached)
fernet = load_encryption_key()
def encrypt_text(text_content: str) -> bytes:
"""
Encrypts a string using the loaded Fernet cipher.
The input string is first encoded to UTF-8 bytes.
"""
return fernet.encrypt(text_content.encode('utf-8'))
def decrypt_text(encrypted_bytes: bytes) -> str | None:
"""
Decrypts bytes using the loaded Fernet cipher.
Returns the decrypted string, or None if decryption fails (e.g., tampering).
"""
try:
return fernet.decrypt(encrypted_bytes).decode('utf-8')
except Exception as e:
st.error(f"Decryption failed. This might indicate data tampering or an incorrect encryption key. Error: {e}")
return None
# --- UI Elements ---
st.subheader("Multilingual PDF & DOCX Entity Finder", divider="orange") # Updated title
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes on the Multilingual PDF & DOCX Entity Finder**") # Updated title
expander.write(f'''
**Named Entities:** This Multilingual PDF & DOCX Entity Finder predicts a wide range of custom labels, including: {", ".join([f'"{label}"' for label in GLINER_LABELS])}.
Results are presented in an easy-to-read table, visualized in an interactive tree map,
pie chart, and bar chart, and are available for download along with a Glossary of tags.
**Supported languages** English, French, German, Spanish, Portuguese, Italian
**How to Use:** Upload your PDF or DOCX file. Then, click the 'Results' button
to extract and tag entities in your text data.
**Usage Limits:** You can request results up to 10 times.
**Language settings:** Please check and adjust the language settings in
your computer, so the French, German, Spanish, Portuguese and Italian
characters are handled properly in your downloaded file.
**Customization:** To change the app's background color to white or
black, click the three-dot menu on the right-hand side of your app, go to
Settings and then Choose app theme, colors and fonts.
**Technical issues:** If your connection times out, please refresh the
page or reopen the app's URL.
For any errors or inquiries, please contact us at [email protected]
''')
with st.sidebar:
container = st.container(border=True)
container.write("**Named Entity Recognition (NER)** is the task of "
"extracting and tagging entities in text data. Entities can be persons, "
"organizations, locations, countries, products, events etc.")
st.subheader("Related NER Web Apps", divider="orange")
st.link_button("Scandinavian JSON Entity Finder",
"https://nlpblogs.com/shop/named-entity-recognition-ner/scandinavian-json-entity-finder/",
type="primary")
# --- File Upload (PDF/DOCX) ---
uploaded_file = st.file_uploader("Upload your file. Accepted file formats include: .pdf, .docx", type=['pdf', 'docx'])
# Initialize text for the current run outside the if uploaded_file block
current_run_text = None
if uploaded_file is not None:
file_extension = uploaded_file.name.split('.')[-1].lower()
if file_extension == 'pdf':
try:
pdf_reader = PdfReader(uploaded_file)
text_content = ""
for page in pdf_reader.pages:
text_content += page.extract_text()
current_run_text = text_content
st.success("PDF file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
except Exception as e:
st.error(f"An error occurred while reading PDF: {e}")
current_run_text = None
elif file_extension == 'docx':
try:
doc = docx.Document(uploaded_file)
text_content = "\n".join([para.text for para in doc.paragraphs])
current_run_text = text_content
st.success("DOCX file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
except Exception as e:
st.error(f"An error occurred while reading DOCX: {e}")
current_run_text = None
else:
st.warning("Unsupported file type. Please upload a .pdf or .docx file.")
current_run_text = None
if current_run_text and current_run_text.strip():
# --- ENCRYPT THE EXTRACTED TEXT BEFORE STORING IN SESSION STATE ---
encrypted_text_bytes = encrypt_text(current_run_text)
st.session_state['encrypted_extracted_text'] = encrypted_text_bytes
st.divider()
else:
st.session_state['encrypted_extracted_text'] = None
st.error("Could not extract meaningful text from the uploaded file.")
# --- Results Button and Processing Logic ---
if st.button("Results"):
start_time_overall = time.time() # Start time for overall processing
if not comet_initialized:
st.warning("Comet ML not initialized. Check environment variables if you wish to log data.")
if st.session_state['file_upload_attempts'] >= max_attempts:
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
st.stop()
# --- DECRYPT THE TEXT BEFORE PASSING TO NER MODEL ---
text_for_ner = None
if st.session_state['encrypted_extracted_text'] is not None:
text_for_ner = decrypt_text(st.session_state['encrypted_extracted_text'])
if text_for_ner is None or not text_for_ner.strip():
st.warning("No extractable text content available for analysis. Please upload a valid PDF or DOCX file.")
st.stop()
st.session_state['file_upload_attempts'] += 1
with st.spinner("Analyzing text...", show_time=True):
model = load_ner_model()
# Measure NER model processing time
start_time_ner = time.time()
# Use GLiNER's predict_entities method with the defined labels
text_entities = model.predict_entities(text_for_ner, GLINER_LABELS)
end_time_ner = time.time()
ner_processing_time = end_time_ner - start_time_ner
df = pd.DataFrame(text_entities)
# Rename 'label' to 'entity_group' and 'text' to 'word' for consistency
if 'label' in df.columns:
df.rename(columns={'label': 'entity_group', 'text': 'word'}, inplace=True)
else:
st.error("Unexpected GLiNER output structure. Please check the model's output format.")
st.stop()
# Replace empty strings with 'Unknown' and drop rows with NaN after cleaning
df = df.replace('', 'Unknown').dropna()
if df.empty:
st.warning("No entities were extracted from the uploaded text.")
st.stop()
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_text_length", len(text_for_ner))
experiment.log_table("predicted_entities", df)
experiment.log_metric("ner_processing_time_seconds", ner_processing_time)
# --- Display Results ---
st.subheader("Extracted Entities", divider="rainbow")
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
df_styled = df.style.set_properties(**properties)
st.dataframe(df_styled, use_container_width=True)
with st.expander("See Glossary of tags"):
st.write('''
'**word**': ['entity extracted from your text data']
'**score**': ['accuracy score; how accurately a tag has been assigned to
a given entity']
'**entity_group**': ['label (tag) assigned to a given extracted entity']
'**start**': ['index of the start of the corresponding entity']
'**end**': ['index of the end of the corresponding entity']
''')
st.subheader("Grouped entities", divider = "orange")
entity_items = [(label, label.replace('_', ' ').title()) for label in GLINER_LABELS]
tabs_per_row = 5
for i in range(0, len(entity_items), tabs_per_row):
current_row_entities = entity_items[i : i + tabs_per_row]
tab_titles = [item[1] for item in current_row_entities]
tabs = st.tabs(tab_titles)
for j, (entity_group_key, tab_title) in enumerate(current_row_entities):
with tabs[j]:
if entity_group_key in df["entity_group"].unique():
df_filtered = df[df["entity_group"] == entity_group_key]
st.dataframe(df_filtered, use_container_width=True)
else:
st.info(f"No '{tab_title}' entities found in the text.")
# Display an empty DataFrame for consistency if no entities are found
st.dataframe(pd.DataFrame({
'entity_group': [entity_group_key],
'score': [np.nan],
'word': [np.nan],
'start': [np.nan],
'end': [np.nan]
}), hide_index=True)
st.divider()
# --- Visualizations ---
st.subheader("Tree map", divider="orange")
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'entity_group', 'word'], # Changed path for better visual grouping
values='score', color='entity_group')
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig_treemap)
if comet_initialized:
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
value_counts1 = df['entity_group'].value_counts()
final_df_counts = value_counts1.reset_index().rename(columns={"index": "entity_group", "count": "count"})
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie Chart", divider="orange")
fig_pie = px.pie(final_df_counts, values='count', names='entity_group',
hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig_pie)
if comet_initialized:
experiment.log_figure(figure=fig_pie, figure_name="label_pie_chart")
with col2:
st.subheader("Bar Chart", divider="orange")
fig_bar = px.bar(final_df_counts, x="count", y="entity_group", color="entity_group", text_auto=True,
title='Occurrences of predicted labels')
st.plotly_chart(fig_bar)
if comet_initialized:
experiment.log_figure(figure=fig_bar, figure_name="label_bar_chart")
# --- Downloadable Content ---
dfa = pd.DataFrame(
data={
'Column Name': ['word', 'entity_group','score', 'start', 'end'],
'Description': [
'entity extracted from your text data',
'label (tag) assigned to a given extracted entity',
'accuracy score; how accurately a tag has been assigned to a given entity',
'index of the start of the corresponding entity',
'index of the end of the corresponding entity',
]
}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="nlpblogs_ner_results.zip",
mime="application/zip",
)
if comet_initialized:
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
st.divider()
if comet_initialized:
experiment.end()
end_time_overall = time.time() # End time for overall processing
elapsed_time_overall = end_time_overall - start_time_overall
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**")
|