Maria Tsilimos
Create app.py
67a9d8b unverified
raw
history blame
16.7 kB
import time
import streamlit as st
import pandas as pd
import io
from streamlit_extras.stylable_container import stylable_container
import plotly.express as px
import zipfile
import os
import re
import numpy as np
from cryptography.fernet import Fernet
from gliner import GLiNER
from PyPDF2 import PdfReader
import docx
from comet_ml import Experiment
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
# --- Configuration ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = False
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
comet_initialized = True
# --- Initialize session state ---
if 'file_upload_attempts' not in st.session_state:
st.session_state['file_upload_attempts'] = 0
if 'encrypted_extracted_text' not in st.session_state:
st.session_state['encrypted_extracted_text'] = None
max_attempts = 10
GLINER_LABELS = ["Person", "Organization", "Phone number", "Address", "Passport number",
"Email", "Credit card number", "Social security number", "Health insurance ID number",
"Date of birth", "Mobile phone number", "Bank account number", "Medication", "CPF",
"Driver license number", "Tax identification number", "Medical condition",
"Identity card number", "National ID number", "IP address", "IBAN",
"Credit card expiration date", "Username", "Health insurance number",
"Registration number", "Student ID number", "Insurance number", "Flight number",
"Landline phone number", "Blood type", "CVV", "Reservation number",
"Digital signature", "Social media handle", "License plate number",
"CNPJ", "Postal code", "Passport_number", "Serial number", "Vehicle registration number",
"Credit card brand", "Fax number", "Visa number", "Insurance company", "Identity document number",
"Transaction number", "National health insurance number", "CVC", "Birth certificate number",
"Train ticket number", "Passport expiration date", "Social_security_number"]
@st.cache_resource
def load_ner_model():
"""
Loads the pre-trained GLiNER NER model (urchade/gliner_multi_pii-v1) and caches it.
This model is suitable for a wide range of custom entity types.
"""
try:
return GLiNER.from_pretrained("urchade/gliner_multi_pii-v1")
except Exception as e:
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
st.stop()
@st.cache_resource
def load_encryption_key():
"""
Loads the Fernet encryption key from environment variables.
This key is crucial for encrypting/decrypting sensitive data.
It's cached as a resource to be loaded only once.
"""
try:
# Get the key string from environment variables
key_str = os.environ.get("FERNET_KEY")
if not key_str:
raise ValueError("FERNET_KEY environment variable not set. Cannot perform encryption/decryption.")
# Fernet key must be bytes, so encode the string
key_bytes = key_str.encode('utf-8')
return Fernet(key_bytes)
except ValueError as ve:
st.error(f"Configuration Error: {ve}. Please ensure the 'FERNET_KEY' environment variable is set securely in your deployment environment (e.g., Hugging Face Spaces secrets, Render environment variables) or in a local .env file for development.")
st.stop() # Stop the app if the key is not found, as security is compromised
except Exception as e:
st.error(f"An unexpected error occurred while loading encryption key: {e}. Please check your key format and environment settings.")
st.stop()
# Initialize the Fernet cipher instance globally (cached)
fernet = load_encryption_key()
def encrypt_text(text_content: str) -> bytes:
"""
Encrypts a string using the loaded Fernet cipher.
The input string is first encoded to UTF-8 bytes.
"""
return fernet.encrypt(text_content.encode('utf-8'))
def decrypt_text(encrypted_bytes: bytes) -> str | None:
"""
Decrypts bytes using the loaded Fernet cipher.
Returns the decrypted string, or None if decryption fails (e.g., tampering).
"""
try:
return fernet.decrypt(encrypted_bytes).decode('utf-8')
except Exception as e:
st.error(f"Decryption failed. This might indicate data tampering or an incorrect encryption key. Error: {e}")
return None
# --- UI Elements ---
st.subheader("Multilingual PDF & DOCX Entity Finder", divider="orange") # Updated title
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes on the Multilingual PDF & DOCX Entity Finder**") # Updated title
expander.write(f'''
**Named Entities:** This Multilingual PDF & DOCX Entity Finder predicts a wide range of custom labels, including: {", ".join([f'"{label}"' for label in GLINER_LABELS])}.
Results are presented in an easy-to-read table, visualized in an interactive tree map,
pie chart, and bar chart, and are available for download along with a Glossary of tags.
**Supported languages** English, French, German, Spanish, Portuguese, Italian
**How to Use:** Upload your PDF or DOCX file. Then, click the 'Results' button
to extract and tag entities in your text data.
**Usage Limits:** You can request results up to 10 times.
**Language settings:** Please check and adjust the language settings in
your computer, so the French, German, Spanish, Portuguese and Italian
characters are handled properly in your downloaded file.
**Customization:** To change the app's background color to white or
black, click the three-dot menu on the right-hand side of your app, go to
Settings and then Choose app theme, colors and fonts.
**Technical issues:** If your connection times out, please refresh the
page or reopen the app's URL.
For any errors or inquiries, please contact us at [email protected]
''')
with st.sidebar:
container = st.container(border=True)
container.write("**Named Entity Recognition (NER)** is the task of "
"extracting and tagging entities in text data. Entities can be persons, "
"organizations, locations, countries, products, events etc.")
st.subheader("Related NER Web Apps", divider="orange")
st.link_button("Scandinavian JSON Entity Finder",
"https://nlpblogs.com/shop/named-entity-recognition-ner/scandinavian-json-entity-finder/",
type="primary")
# --- File Upload (PDF/DOCX) ---
uploaded_file = st.file_uploader("Upload your file. Accepted file formats include: .pdf, .docx", type=['pdf', 'docx'])
# Initialize text for the current run outside the if uploaded_file block
current_run_text = None
if uploaded_file is not None:
file_extension = uploaded_file.name.split('.')[-1].lower()
if file_extension == 'pdf':
try:
pdf_reader = PdfReader(uploaded_file)
text_content = ""
for page in pdf_reader.pages:
text_content += page.extract_text()
current_run_text = text_content
st.success("PDF file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
except Exception as e:
st.error(f"An error occurred while reading PDF: {e}")
current_run_text = None
elif file_extension == 'docx':
try:
doc = docx.Document(uploaded_file)
text_content = "\n".join([para.text for para in doc.paragraphs])
current_run_text = text_content
st.success("DOCX file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
except Exception as e:
st.error(f"An error occurred while reading DOCX: {e}")
current_run_text = None
else:
st.warning("Unsupported file type. Please upload a .pdf or .docx file.")
current_run_text = None
if current_run_text and current_run_text.strip():
# --- ENCRYPT THE EXTRACTED TEXT BEFORE STORING IN SESSION STATE ---
encrypted_text_bytes = encrypt_text(current_run_text)
st.session_state['encrypted_extracted_text'] = encrypted_text_bytes
st.divider()
else:
st.session_state['encrypted_extracted_text'] = None
st.error("Could not extract meaningful text from the uploaded file.")
# --- Results Button and Processing Logic ---
if st.button("Results"):
start_time_overall = time.time() # Start time for overall processing
if not comet_initialized:
st.warning("Comet ML not initialized. Check environment variables if you wish to log data.")
if st.session_state['file_upload_attempts'] >= max_attempts:
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
st.stop()
# --- DECRYPT THE TEXT BEFORE PASSING TO NER MODEL ---
text_for_ner = None
if st.session_state['encrypted_extracted_text'] is not None:
text_for_ner = decrypt_text(st.session_state['encrypted_extracted_text'])
if text_for_ner is None or not text_for_ner.strip():
st.warning("No extractable text content available for analysis. Please upload a valid PDF or DOCX file.")
st.stop()
st.session_state['file_upload_attempts'] += 1
with st.spinner("Analyzing text...", show_time=True):
model = load_ner_model()
# Measure NER model processing time
start_time_ner = time.time()
# Use GLiNER's predict_entities method with the defined labels
text_entities = model.predict_entities(text_for_ner, GLINER_LABELS)
end_time_ner = time.time()
ner_processing_time = end_time_ner - start_time_ner
df = pd.DataFrame(text_entities)
# Rename 'label' to 'entity_group' and 'text' to 'word' for consistency
if 'label' in df.columns:
df.rename(columns={'label': 'entity_group', 'text': 'word'}, inplace=True)
else:
st.error("Unexpected GLiNER output structure. Please check the model's output format.")
st.stop()
# Replace empty strings with 'Unknown' and drop rows with NaN after cleaning
df = df.replace('', 'Unknown').dropna()
if df.empty:
st.warning("No entities were extracted from the uploaded text.")
st.stop()
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_text_length", len(text_for_ner))
experiment.log_table("predicted_entities", df)
experiment.log_metric("ner_processing_time_seconds", ner_processing_time)
# --- Display Results ---
st.subheader("Extracted Entities", divider="rainbow")
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
df_styled = df.style.set_properties(**properties)
st.dataframe(df_styled, use_container_width=True)
with st.expander("See Glossary of tags"):
st.write('''
'**word**': ['entity extracted from your text data']
'**score**': ['accuracy score; how accurately a tag has been assigned to
a given entity']
'**entity_group**': ['label (tag) assigned to a given extracted entity']
'**start**': ['index of the start of the corresponding entity']
'**end**': ['index of the end of the corresponding entity']
''')
st.subheader("Grouped entities", divider = "orange")
entity_items = [(label, label.replace('_', ' ').title()) for label in GLINER_LABELS]
tabs_per_row = 5
for i in range(0, len(entity_items), tabs_per_row):
current_row_entities = entity_items[i : i + tabs_per_row]
tab_titles = [item[1] for item in current_row_entities]
tabs = st.tabs(tab_titles)
for j, (entity_group_key, tab_title) in enumerate(current_row_entities):
with tabs[j]:
if entity_group_key in df["entity_group"].unique():
df_filtered = df[df["entity_group"] == entity_group_key]
st.dataframe(df_filtered, use_container_width=True)
else:
st.info(f"No '{tab_title}' entities found in the text.")
# Display an empty DataFrame for consistency if no entities are found
st.dataframe(pd.DataFrame({
'entity_group': [entity_group_key],
'score': [np.nan],
'word': [np.nan],
'start': [np.nan],
'end': [np.nan]
}), hide_index=True)
st.divider()
# --- Visualizations ---
st.subheader("Tree map", divider="orange")
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'entity_group', 'word'], # Changed path for better visual grouping
values='score', color='entity_group')
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig_treemap)
if comet_initialized:
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
value_counts1 = df['entity_group'].value_counts()
final_df_counts = value_counts1.reset_index().rename(columns={"index": "entity_group", "count": "count"})
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie Chart", divider="orange")
fig_pie = px.pie(final_df_counts, values='count', names='entity_group',
hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig_pie)
if comet_initialized:
experiment.log_figure(figure=fig_pie, figure_name="label_pie_chart")
with col2:
st.subheader("Bar Chart", divider="orange")
fig_bar = px.bar(final_df_counts, x="count", y="entity_group", color="entity_group", text_auto=True,
title='Occurrences of predicted labels')
st.plotly_chart(fig_bar)
if comet_initialized:
experiment.log_figure(figure=fig_bar, figure_name="label_bar_chart")
# --- Downloadable Content ---
dfa = pd.DataFrame(
data={
'Column Name': ['word', 'entity_group','score', 'start', 'end'],
'Description': [
'entity extracted from your text data',
'label (tag) assigned to a given extracted entity',
'accuracy score; how accurately a tag has been assigned to a given entity',
'index of the start of the corresponding entity',
'index of the end of the corresponding entity',
]
}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="nlpblogs_ner_results.zip",
mime="application/zip",
)
if comet_initialized:
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
st.divider()
if comet_initialized:
experiment.end()
end_time_overall = time.time() # End time for overall processing
elapsed_time_overall = end_time_overall - start_time_overall
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**")