File size: 19,858 Bytes
a294533
0637793
4088dea
64e8d9c
 
a294533
348c3b8
3f3c9af
4088dea
565e834
a294533
565e834
4088dea
a294533
 
565e834
393ce87
eb249f4
393ce87
4088dea
a294533
565e834
a294533
 
 
 
 
64e8d9c
a294533
393ce87
a294533
 
 
 
 
 
 
0637793
393ce87
 
565e834
 
 
393ce87
 
 
 
a294533
4088dea
 
565e834
4088dea
 
17bfc41
565e834
 
 
 
0637793
 
 
 
c8a5a1f
0637793
7c9f89e
 
565e834
 
 
3f3c9af
393ce87
7c9f89e
 
 
 
 
4088dea
7c9f89e
c3b4d73
565e834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8a5a1f
 
565e834
 
348c3b8
7c9f89e
565e834
3f3c9af
7c9f89e
f516184
3f3c9af
f516184
565e834
 
c3b4d73
565e834
 
a294533
 
565e834
a294533
 
565e834
a294533
 
 
565e834
 
348c3b8
 
 
565e834
 
 
348c3b8
565e834
348c3b8
565e834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8a5a1f
565e834
c8a5a1f
565e834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a294533
565e834
 
 
a294533
348c3b8
565e834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a294533
 
 
565e834
 
a294533
 
 
348c3b8
a294533
f516184
565e834
 
 
a294533
 
565e834
 
 
 
 
 
 
 
 
dc017da
565e834
 
 
 
c8a5a1f
565e834
 
 
 
 
 
 
 
 
 
 
348c3b8
565e834
348c3b8
4088dea
17bfc41
4088dea
 
 
 
 
eb249f4
4088dea
 
 
565e834
4088dea
a294533
 
 
565e834
 
 
 
 
a294533
 
 
565e834
a294533
565e834
 
 
a294533
565e834
 
a294533
 
565e834
a294533
565e834
a294533
 
 
565e834
64e8d9c
565e834
64e8d9c
565e834
64e8d9c
 
7316e92
64e8d9c
 
 
 
 
 
565e834
 
 
 
64e8d9c
 
565e834
 
64e8d9c
 
565e834
64e8d9c
 
 
565e834
 
 
 
 
64e8d9c
565e834
 
 
64e8d9c
565e834
 
 
 
 
64e8d9c
565e834
 
64e8d9c
 
 
565e834
64e8d9c
565e834
 
 
 
 
 
 
c8a5a1f
565e834
 
 
 
 
 
 
 
 
64e8d9c
 
565e834
64e8d9c
565e834
eb249f4
64e8d9c
a294533
 
565e834
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import base64
import json
import os
import secrets
import string
import time
from typing import List, Optional, Union, Any
import httpx
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel

# --- Configuration ---
load_dotenv()
# Env variables for external services
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
SNAPZION_API_KEY = os.environ.get("SNAP", "")

# --- Dummy Model Definitions ---
# In a real application, these would be defined properly.
AVAILABLE_MODELS = [
    {"id": "gpt-4-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
    {"id": "gpt-4o", "object": "model", "created": int(time.time()), "owned_by": "system"},
    {"id": "gpt-3.5-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
    {"id": "dall-e-3", "object": "model", "created": int(time.time()), "owned_by": "system"},
    {"id": "text-moderation-stable", "object": "model", "created": int(time.time()), "owned_by": "system"},
]
MODEL_ALIASES = {}

# --- FastAPI Application ---
app = FastAPI(
    title="OpenAI Compatible API",
    description="An adapter for various services to be compatible with the OpenAI API specification.",
    version="1.0.0"
)

# --- Helper Function for Random ID Generation ---
def generate_random_id(prefix: str, length: int = 29) -> str:
    """
    Generates a cryptographically secure, random alphanumeric ID.
    """
    population = string.ascii_letters + string.digits
    random_part = "".join(secrets.choice(population) for _ in range(length))
    return f"{prefix}{random_part}"

# === API Endpoints ===
@app.get("/v1/models")
async def list_models():
    """Lists the available models."""
    return {"object": "list", "data": AVAILABLE_MODELS}

# === Chat Completion ===
class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    messages: List[Message]
    model: str
    stream: Optional[bool] = False
    tools: Optional[Any] = None

@app.post("/v1/chat/completions")
async def chat_completion(request: ChatRequest):
    """
    Handles chat completion requests, supporting both streaming and non-streaming responses.
    """
    model_id = MODEL_ALIASES.get(request.model, request.model)
    chat_id = generate_random_id("chatcmpl-")
    headers = {
        'accept': 'text/event-stream',
        'content-type': 'application/json',
        'origin': 'https://www.chatwithmono.xyz',
        'referer': 'https://www.chatwithmono.xyz/',
        'user-agent': 'Mozilla/5.0',
    }
    if request.tools:
        # Handle tool by giving in system prompt.
        # Tool call must be encoded in <tool_call><tool_call> XML tag.
        tool_prompt = f"""You have access to the following tools . To call a tool, please respond with JSON for a tool call within <tool_call><tool_call> XML tag. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
Tools:
{";".join(f"<tool>{tool}</tool>" for tool in request.tools)}

Response Format for tool call:
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{{"name": <function-name>, "arguments": <args-json-object>}}
</tool_call>

Example of tool calling:
<tool_call>
{{"name": "get_weather", "parameters": {{"city": "New York"}}}}
</tool_call>

Using tools is recommended.
        """
        if request.messages[0].role == "system":
            request.messages[0].content += "\n\n" + tool_prompt
        else:
            request.messages.insert(0, {"role": "system", "content": tool_prompt})
    request_data = request.model_dump(exclude_unset=True)

    payload = {
        "messages": request_data["messages"],
        "model": model_id
    }
    if request.stream:
        async def event_stream():
            created = int(time.time())
            is_first_chunk = True
            usage_info = None
            is_tool_call = False
            chunks_buffer = []
            max_initial_chunks = 4  # Number of initial chunks to buffer
            try:
                async with httpx.AsyncClient(timeout=120) as client:
                    async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat", headers=headers, json=payload) as response:
                        response.raise_for_status()
                        async for line in response.aiter_lines():
                            if not line: continue
                            if line.startswith("0:"):
                                try:
                                    content_piece = json.loads(line[2:])
                                    print(content_piece)
                                    # Buffer the first few chunks
                                    if len(chunks_buffer) < max_initial_chunks:
                                        chunks_buffer.append(content_piece)
                                        continue
                                    # Process the buffered chunks if we haven't already
                                    if chunks_buffer and not is_tool_call:
                                        full_buffer = ''.join(chunks_buffer)
                                        if "<tool_call>" in full_buffer:
                                            print("Tool call detected")
                                            is_tool_call = True

                                    # Process the current chunk
                                    if is_tool_call:
                                        chunks_buffer.append(content_piece)

                                        full_buffer = ''.join(chunks_buffer)

                                        if "</tool_call>" in full_buffer:
                                            print("Tool call End detected")
                                            # Process tool call in the current chunk
                                            tool_call_str = full_buffer.split("<tool_call>")[1].split("</tool_call>")[0]
                                            tool_call_json = json.loads(tool_call_str.strip())
                                            delta = {
                                                "content": None,
                                                "tool_calls": [{
                                                    "index": 0,
                                                    "id": generate_random_id("call_"),
                                                    "type": "function",
                                                    "function": {
                                                        "name": tool_call_json["name"],
                                                        "arguments": json.dumps(tool_call_json["parameters"])
                                                    }
                                                }]
                                            }
                                            chunk_data = {
                                                "id": chat_id, "object": "chat.completion.chunk", "created": created,
                                                "model": model_id,
                                                "choices": [{"index": 0, "delta": delta, "finish_reason": None}],
                                                "usage": None
                                            }
                                            yield f"data: {json.dumps(chunk_data)}\n\n"
                                        else:
                                            continue
                                    else:

                                        # Regular content
                                        if is_first_chunk:
                                            delta = {"content": "".join(chunks_buffer), "tool_calls": None}
                                            delta["role"] = "assistant"
                                            is_first_chunk = False
                                            chunk_data = {
                                            "id": chat_id, "object": "chat.completion.chunk", "created": created,
                                            "model": model_id,
                                            "choices": [{"index": 0, "delta": delta, "finish_reason": None}],
                                            "usage": None
                                            }
                                            yield f"data: {json.dumps(chunk_data)}\n\n"

                                        delta = {"content": content_piece, "tool_calls": None}

                                        chunk_data = {
                                            "id": chat_id, "object": "chat.completion.chunk", "created": created,
                                            "model": model_id,
                                            "choices": [{"index": 0, "delta": delta, "finish_reason": None}],
                                            "usage": None
                                        }
                                        yield f"data: {json.dumps(chunk_data)}\n\n"
                                except json.JSONDecodeError: continue
                            elif line.startswith(("e:", "d:")):
                                try:
                                    usage_info = json.loads(line[2:]).get("usage")
                                except (json.JSONDecodeError, AttributeError): pass
                                break

                        final_usage = None
                        if usage_info:
                            prompt_tokens = usage_info.get("promptTokens", 0)
                            completion_tokens = usage_info.get("completionTokens", 0)
                            final_usage = {
                                "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens,
                                "total_tokens": prompt_tokens + completion_tokens,
                            }
                        done_chunk = {
                            "id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
                            "choices": [{
                                "index": 0,
                                "delta": {"role": "assistant", "content": None, "function_call": None, "tool_calls": None},
                                "finish_reason": "stop"
                            }],
                            "usage": final_usage
                        }
                        yield f"data: {json.dumps(done_chunk)}\n\n"
            except httpx.HTTPStatusError as e:
                error_content = {
                    "error": {
                        "message": f"Upstream API error: {e.response.status_code}. Details: {e.response.text}",
                        "type": "upstream_error", "code": str(e.response.status_code)
                    }
                }
                yield f"data: {json.dumps(error_content)}\n\n"
            finally:
                yield "data: [DONE]\n\n"
        return StreamingResponse(event_stream(), media_type="text/event-stream")
    else: # Non-streaming
        assistant_response, usage_info = "", {}
        tool_call_json = None
        try:
            async with httpx.AsyncClient(timeout=120) as client:
                async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat", headers=headers, json=payload) as response:
                    response.raise_for_status()
                    async for chunk in response.aiter_lines():
                        if chunk.startswith("0:"):
                            try: assistant_response += json.loads(chunk[2:])
                            except: continue
                        elif chunk.startswith(("e:", "d:")):
                            try: usage_info = json.loads(chunk[2:]).get("usage", {})
                            except: continue

            if "<tool_call>" in assistant_response and "</tool_call>" in assistant_response:
                tool_call_str = assistant_response.split("<tool_call>")[1].split("</tool_call>")[0]
                tool_call = json.loads(tool_call_str.strip())
                tool_call_json = [{"id": generate_random_id("call_"),"function": {"name": tool_call["name"], "arguments": json.dumps(tool_call["parameters"])}}]


                
            return JSONResponse(content={
                "id": chat_id, "object": "chat.completion", "created": int(time.time()), "model": model_id,
                "choices": [{"index": 0, "message": {"role": "assistant", "content": assistant_response if tool_call_json is None else None, "tool_calls": tool_call_json}, "finish_reason": "stop"}],
                "usage": {
                    "prompt_tokens": usage_info.get("promptTokens", 0),
                    "completion_tokens": usage_info.get("completionTokens", 0),
                    "total_tokens": usage_info.get("promptTokens", 0) + usage_info.get("completionTokens", 0),
                }
            })
        except httpx.HTTPStatusError as e:
            return JSONResponse(status_code=e.response.status_code, content={"error": {"message": f"Upstream API error. Details: {e.response.text}", "type": "upstream_error"}})


# === Image Generation ===
class ImageGenerationRequest(BaseModel):
    prompt: str
    aspect_ratio: Optional[str] = "1:1"
    n: Optional[int] = 1
    user: Optional[str] = None
    model: Optional[str] = "default"

@app.post("/v1/images/generations")
async def generate_images(request: ImageGenerationRequest):
    """Handles image generation requests."""
    results = []
    try:
        async with httpx.AsyncClient(timeout=120) as client:
            for _ in range(request.n):
                model = request.model or "default"
                if model in ["gpt-image-1", "dall-e-3", "dall-e-2", "nextlm-image-1"]:
                    headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
                    payload = {"prompt": request.prompt, "model": model}
                    resp = await client.post("https://www.chatwithmono.xyz/api/image", headers=headers, json=payload)
                    resp.raise_for_status()
                    data = resp.json()
                    b64_image = data.get("image")
                    if not b64_image: return JSONResponse(status_code=502, content={"error": "Missing base64 image in response"})
                    if SNAPZION_API_KEY:
                        upload_headers = {"Authorization": SNAPZION_API_KEY}
                        upload_files = {'file': ('image.png', base64.b64decode(b64_image), 'image/png')}
                        upload_resp = await client.post(SNAPZION_UPLOAD_URL, headers=upload_headers, files=upload_files)
                        upload_resp.raise_for_status()
                        upload_data = upload_resp.json()
                        image_url = upload_data.get("url")
                    else:
                        image_url = f"data:image/png;base64,{b64_image}"
                    results.append({"url": image_url, "b64_json": b64_image, "revised_prompt": data.get("revised_prompt")})
                else:
                    params = {"prompt": request.prompt, "aspect_ratio": request.aspect_ratio, "link": "typegpt.net"}
                    resp = await client.get(IMAGE_API_URL, params=params)
                    resp.raise_for_status()
                    data = resp.json()
                    results.append({"url": data.get("image_link"), "b64_json": data.get("base64_output")})
    except httpx.HTTPStatusError as e:
        return JSONResponse(status_code=502, content={"error": f"Image generation failed. Upstream error: {e.response.status_code}", "details": e.response.text})
    except Exception as e:
        return JSONResponse(status_code=500, content={"error": "An internal error occurred.", "details": str(e)})
    return {"created": int(time.time()), "data": results}

# === Moderation Endpoint ===
class ModerationRequest(BaseModel):
    input: Union[str, List[str]]
    model: Optional[str] = "text-moderation-stable"

@app.post("/v1/moderations")
async def create_moderation(request: ModerationRequest):
    """
    Handles moderation requests, conforming to the OpenAI API specification.
    Includes a custom 'reason' field in the result if provided by the upstream API.
    """
    input_texts = [request.input] if isinstance(request.input, str) else request.input
    if not input_texts:
         return JSONResponse(status_code=400, content={"error": {"message": "Request must have at least one input string.", "type": "invalid_request_error"}})
    moderation_url = "https://www.chatwithmono.xyz/api/moderation"
    headers = {
        'Content-Type': 'application/json',
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36',
        'Referer': 'https://www.chatwithmono.xyz/',
    }
    results = []
    try:
        async with httpx.AsyncClient(timeout=30) as client:
            for text_input in input_texts:
                payload = {"text": text_input}
                resp = await client.post(moderation_url, headers=headers, json=payload)
                resp.raise_for_status()
                upstream_data = resp.json()
                # --- Transform upstream response to OpenAI format ---
                upstream_categories = upstream_data.get("categories", {})
                openai_categories = {
                    "hate": upstream_categories.get("hate", False), "hate/threatening": False,
                    "harassment": False, "harassment/threatening": False,
                    "self-harm": upstream_categories.get("self-harm", False), "self-harm/intent": False, "self-harm/instructions": False,
                    "sexual": upstream_categories.get("sexual", False), "sexual/minors": False,
                    "violence": upstream_categories.get("violence", False), "violence/graphic": False,
                }
                category_scores = {k: 1.0 if v else 0.0 for k, v in openai_categories.items()}
                flagged = upstream_data.get("overall_sentiment") == "flagged"
                result_item = {
                    "flagged": flagged,
                    "categories": openai_categories,
                    "category_scores": category_scores,
                }

                # --- NEW: Conditionally add the 'reason' field ---
                # This is a custom extension to the OpenAI spec to provide more detail.
                reason = upstream_data.get("reason")
                if reason:
                    result_item["reason"] = reason

                results.append(result_item)
    except httpx.HTTPStatusError as e:
        return JSONResponse(
            status_code=502, # Bad Gateway
            content={"error": {"message": f"Moderation failed. Upstream error: {e.response.status_code}", "type": "upstream_error", "details": e.response.text}}
        )
    except Exception as e:
        return JSONResponse(status_code=500, content={"error": {"message": "An internal error occurred during moderation.", "type": "internal_error", "details": str(e)}})
    # Build the final OpenAI-compatible response
    final_response = {
        "id": generate_random_id("modr-"),
        "model": request.model,
        "results": results,
    }
    return JSONResponse(content=final_response)

# --- Main Execution ---
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)