Mono / main.py
AIMaster7's picture
Update main.py
06dc2f1 verified
raw
history blame
22.7 kB
import base64
import json
import os
import secrets
import string
import time
import tempfile
import ast
from typing import List, Optional, Union, Any
import httpx
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel, Field, model_validator
# Import for OCR functionality
from gradio_client import Client, handle_file
# --- Configuration ---
load_dotenv()
# Environment variables for external services
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
SNAPZION_API_KEY = os.environ.get("SNAP", "")
CHAT_API_URL = "https://www.chatwithmono.xyz/api/chat"
IMAGE_GEN_API_URL = "https://www.chatwithmono.xyz/api/image"
MODERATION_API_URL = "https://www.chatwithmono.xyz/api/moderation"
# --- Model Definitions ---
AVAILABLE_MODELS = [
{"id": "gpt-4-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "gpt-4o", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "gpt-3.5-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "dall-e-3", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "text-moderation-stable", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "florence-2-ocr", "object": "model", "created": int(time.time()), "owned_by": "system"},
]
MODEL_ALIASES = {}
# --- FastAPI Application & Global Clients ---
app = FastAPI(
title="OpenAI Compatible API",
description="An adapter for various services to be compatible with the OpenAI API specification.",
version="1.1.3" # Version reflects final formatting and fixes
)
# Initialize Gradio client globally to avoid re-initialization on each request
try:
ocr_client = Client("multimodalart/Florence-2-l4")
except Exception as e:
print(f"Warning: Could not initialize Gradio client for OCR: {e}")
ocr_client = None
# --- Pydantic Models ---
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
messages: List[Message]
model: str
stream: Optional[bool] = False
tools: Optional[Any] = None
class ImageGenerationRequest(BaseModel):
prompt: str
aspect_ratio: Optional[str] = "1:1"
n: Optional[int] = 1
user: Optional[str] = None
model: Optional[str] = "default"
class ModerationRequest(BaseModel):
input: Union[str, List[str]]
model: Optional[str] = "text-moderation-stable"
class OcrRequest(BaseModel):
image_url: Optional[str] = Field(None, description="URL of the image to process.")
image_b64: Optional[str] = Field(None, description="Base64 encoded string of the image to process.")
@model_validator(mode='before')
@classmethod
def check_sources(cls, data: Any) -> Any:
if isinstance(data, dict):
if not (data.get('image_url') or data.get('image_b64')):
raise ValueError('Either image_url or image_b64 must be provided.')
if data.get('image_url') and data.get('image_b64'):
raise ValueError('Provide either image_url or image_b64, not both.')
return data
class OcrResponse(BaseModel):
ocr_text: str
raw_response: dict
# --- Helper Function ---
def generate_random_id(prefix: str, length: int = 29) -> str:
"""Generates a cryptographically secure, random alphanumeric ID."""
population = string.ascii_letters + string.digits
random_part = "".join(secrets.choice(population) for _ in range(length))
return f"{prefix}{random_part}"
# === API Endpoints ===
@app.get("/v1/models", tags=["Models"])
async def list_models():
"""Lists the available models."""
return {"object": "list", "data": AVAILABLE_MODELS}
@app.post("/v1/chat/completions", tags=["Chat"])
async def chat_completion(request: ChatRequest):
"""Handles chat completion requests, supporting streaming and non-streaming."""
model_id = MODEL_ALIASES.get(request.model, request.model)
chat_id = generate_random_id("chatcmpl-")
headers = {
'accept': 'text/event-stream',
'content-type': 'application/json',
'origin': 'https://www.chatwithmono.xyz',
'referer': 'https://www.chatwithmono.xyz/',
'user-agent': 'Mozilla/5.0',
}
if request.tools:
tool_prompt = f"""You have access to the following tools. To call a tool, please respond with JSON for a tool call within <tool_call></tool_call> XML tags. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
Tools: {";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
Response Format for tool call:
<tool_call>
{{"name": <function-name>, "arguments": <args-json-object>}}
</tool_call>"""
if request.messages[0].role == "system":
request.messages[0].content += "\n\n" + tool_prompt
else:
request.messages.insert(0, Message(role="system", content=tool_prompt))
payload = {"messages": [msg.model_dump() for msg in request.messages], "model": model_id}
if request.stream:
async def event_stream():
created = int(time.time())
usage_info = None
is_first_chunk = True
tool_call_buffer = ""
in_tool_call = False
try:
async with httpx.AsyncClient(timeout=120) as client:
async with client.stream("POST", CHAT_API_URL, headers=headers, json=payload) as response:
response.raise_for_status()
async for line in response.aiter_lines():
if not line:
continue
if line.startswith("0:"):
try:
content_piece = json.loads(line[2:])
except json.JSONDecodeError:
continue
current_buffer = content_piece
if in_tool_call:
current_buffer = tool_call_buffer + content_piece
if "</tool_call>" in current_buffer:
tool_str = current_buffer.split("<tool_call>")[1].split("</tool_call>")[0]
tool_json = json.loads(tool_str.strip())
delta = {
"content": None,
"tool_calls": [{"index": 0, "id": generate_random_id("call_"), "type": "function",
"function": {"name": tool_json["name"], "arguments": json.dumps(tool_json["parameters"])}}]
}
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
yield f"data: {json.dumps(chunk)}\n\n"
in_tool_call = False
tool_call_buffer = ""
remaining_text = current_buffer.split("</tool_call>", 1)[1]
if remaining_text:
content_piece = remaining_text
else:
continue
if "<tool_call>" in content_piece:
in_tool_call = True
tool_call_buffer += content_piece.split("<tool_call>", 1)[1]
text_before = content_piece.split("<tool_call>", 1)[0]
if text_before:
delta = {"content": text_before, "tool_calls": None}
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
yield f"data: {json.dumps(chunk)}\n\n"
if "</tool_call>" not in tool_call_buffer:
continue
if not in_tool_call:
delta = {"content": content_piece}
if is_first_chunk:
delta["role"] = "assistant"
is_first_chunk = False
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
yield f"data: {json.dumps(chunk)}\n\n"
elif line.startswith(("e:", "d:")):
try:
usage_info = json.loads(line[2:]).get("usage")
except (json.JSONDecodeError, AttributeError):
pass
break
final_usage = None
if usage_info:
prompt_tokens = usage_info.get("promptTokens", 0)
completion_tokens = usage_info.get("completionTokens", 0)
final_usage = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
finish_reason = "tool_calls" if in_tool_call else "stop"
done_chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
"choices": [{"index": 0, "delta": {}, "finish_reason": finish_reason}], "usage": final_usage}
yield f"data: {json.dumps(done_chunk)}\n\n"
except httpx.HTTPStatusError as e:
error_content = {"error": {"message": f"Upstream API error: {e.response.status_code}. Details: {e.response.text}", "type": "upstream_error", "code": str(e.response.status_code)}}
yield f"data: {json.dumps(error_content)}\n\n"
finally:
yield "data: [DONE]\n\n"
return StreamingResponse(event_stream(), media_type="text/event-stream")
else: # Non-streaming response
full_response, usage_info = "", {}
try:
async with httpx.AsyncClient(timeout=120) as client:
async with client.stream("POST", CHAT_API_URL, headers=headers, json=payload) as response:
response.raise_for_status()
async for chunk in response.aiter_lines():
if chunk.startswith("0:"):
try:
full_response += json.loads(chunk[2:])
except:
continue
elif chunk.startswith(("e:", "d:")):
try:
usage_info = json.loads(chunk[2:]).get("usage", {})
except:
continue
tool_calls = None
content_response = full_response
finish_reason = "stop"
if "<tool_call>" in full_response and "</tool_call>" in full_response:
tool_call_str = full_response.split("<tool_call>")[1].split("</tool_call>")[0]
tool_call = json.loads(tool_call_str.strip())
tool_calls = [{
"id": generate_random_id("call_"),
"type": "function",
"function": {
"name": tool_call["name"],
"arguments": json.dumps(tool_call["parameters"])
}
}]
content_response = None
finish_reason = "tool_calls"
prompt_tokens = usage_info.get("promptTokens", 0)
completion_tokens = usage_info.get("completionTokens", 0)
return JSONResponse(content={
"id": chat_id,
"object": "chat.completion",
"created": int(time.time()),
"model": model_id,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": content_response,
"tool_calls": tool_calls
},
"finish_reason": finish_reason
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
})
except httpx.HTTPStatusError as e:
return JSONResponse(
status_code=e.response.status_code,
content={"error": {"message": f"Upstream API error. Details: {e.response.text}", "type": "upstream_error"}}
)
@app.post("/v1/images/generations", tags=["Images"])
async def generate_images(request: ImageGenerationRequest):
"""Handles image generation requests."""
results = []
try:
async with httpx.AsyncClient(timeout=120) as client:
for _ in range(request.n):
model = request.model or "default"
if model in ["gpt-image-1", "dall-e-3", "dall-e-2", "nextlm-image-1"]:
headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
payload = {"prompt": request.prompt, "model": model}
resp = await client.post(IMAGE_GEN_API_URL, headers=headers, json=payload)
resp.raise_for_status()
data = resp.json()
b64_image = data.get("image")
if not b64_image:
return JSONResponse(status_code=502, content={"error": "Missing base64 image in response"})
image_url = f"data:image/png;base64,{b64_image}"
if SNAPZION_API_KEY:
upload_headers = {"Authorization": SNAPZION_API_KEY}
upload_files = {'file': ('image.png', base64.b64decode(b64_image), 'image/png')}
upload_resp = await client.post(SNAPZION_UPLOAD_URL, headers=upload_headers, files=upload_files)
if upload_resp.status_code == 200:
image_url = upload_resp.json().get("url", image_url)
results.append({"url": image_url, "b64_json": b64_image, "revised_prompt": data.get("revised_prompt")})
else:
params = {"prompt": request.prompt, "aspect_ratio": request.aspect_ratio, "link": "typegpt.net"}
resp = await client.get(IMAGE_API_URL, params=params)
resp.raise_for_status()
data = resp.json()
results.append({"url": data.get("image_link"), "b64_json": data.get("base64_output")})
except httpx.HTTPStatusError as e:
return JSONResponse(status_code=502, content={"error": f"Image generation failed. Upstream error: {e.response.status_code}", "details": e.response.text})
except Exception as e:
return JSONResponse(status_code=500, content={"error": "An internal error occurred.", "details": str(e)})
return {"created": int(time.time()), "data": results}
@app.post("/v1/ocr", response_model=OcrResponse, tags=["OCR"])
async def perform_ocr(request: OcrRequest):
"""
Performs Optical Character Recognition (OCR) on an image using the Florence-2 model.
Provide an image via a URL or a base64 encoded string.
"""
if not ocr_client:
raise HTTPException(status_code=503, detail="OCR service is not available. Gradio client failed to initialize.")
image_path, temp_file_path = None, None
try:
if request.image_url:
image_path = request.image_url
elif request.image_b64:
image_bytes = base64.b64decode(request.image_b64)
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
temp_file.write(image_bytes)
temp_file_path = temp_file.name
image_path = temp_file_path
prediction = ocr_client.predict(image=handle_file(image_path), task_prompt="OCR", api_name="/process_image")
if not prediction or not isinstance(prediction, tuple) or len(prediction) == 0:
raise HTTPException(status_code=502, detail="Invalid or empty response from OCR service.")
raw_output = prediction[0]
raw_result_dict = {}
# --- Robust Parsing Logic ---
if isinstance(raw_output, str):
try:
# First, try to parse as standard JSON
raw_result_dict = json.loads(raw_output)
except json.JSONDecodeError:
try:
# If JSON fails, try to evaluate as a Python literal (handles single quotes)
parsed_output = ast.literal_eval(raw_output)
if isinstance(parsed_output, dict):
raw_result_dict = parsed_output
else:
# The literal is something else (e.g., a list), wrap it.
raw_result_dict = {"result": str(parsed_output)}
except (ValueError, SyntaxError):
# If all parsing fails, assume the string is the direct OCR text.
raw_result_dict = {"ocr_text_from_string": raw_output}
elif isinstance(raw_output, dict):
# It's already a dictionary, use it directly
raw_result_dict = raw_output
else:
# Handle other unexpected data types
raise HTTPException(status_code=502, detail=f"Unexpected data type from OCR service: {type(raw_output)}")
# Extract text from the dictionary, with multiple fallbacks
ocr_text = raw_result_dict.get("OCR",
raw_result_dict.get("ocr_text_from_string",
str(raw_result_dict)))
return OcrResponse(ocr_text=ocr_text, raw_response=raw_result_dict)
except Exception as e:
if isinstance(e, HTTPException):
raise e
raise HTTPException(status_code=500, detail=f"An error occurred during OCR processing: {str(e)}")
finally:
if temp_file_path and os.path.exists(temp_file_path):
os.unlink(temp_file_path)
@app.post("/v1/moderations", tags=["Moderation"])
async def create_moderation(request: ModerationRequest):
"""Handles moderation requests, conforming to the OpenAI API specification."""
input_texts = [request.input] if isinstance(request.input, str) else request.input
if not input_texts:
return JSONResponse(status_code=400, content={"error": {"message": "Request must have at least one input string."}})
headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
results = []
try:
async with httpx.AsyncClient(timeout=30) as client:
for text_input in input_texts:
payload = {"text": text_input}
resp = await client.post(MODERATION_API_URL, headers=headers, json=payload)
resp.raise_for_status()
upstream_data = resp.json()
upstream_categories = upstream_data.get("categories", {})
openai_categories = {
"hate": upstream_categories.get("hate", False),
"hate/threatening": False,
"harassment": False,
"harassment/threatening": False,
"self-harm": upstream_categories.get("self-harm", False),
"self-harm/intent": False,
"self-harm/instructions": False,
"sexual": upstream_categories.get("sexual", False),
"sexual/minors": False,
"violence": upstream_categories.get("violence", False),
"violence/graphic": False,
}
result_item = {
"flagged": upstream_data.get("overall_sentiment") == "flagged",
"categories": openai_categories,
"category_scores": {k: 1.0 if v else 0.0 for k, v in openai_categories.items()},
}
if reason := upstream_data.get("reason"):
result_item["reason"] = reason
results.append(result_item)
except httpx.HTTPStatusError as e:
return JSONResponse(
status_code=502,
content={"error": {"message": f"Moderation failed. Upstream error: {e.response.status_code}", "details": e.response.text}}
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": {"message": "An internal error occurred during moderation.", "details": str(e)}}
)
final_response = {
"id": generate_random_id("modr-"),
"model": request.model,
"results": results,
}
return JSONResponse(content=final_response)
# --- Main Execution ---
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)