File size: 22,668 Bytes
a294533 0637793 4088dea 64e8d9c a294533 eea98cf 06dc2f1 348c3b8 eea98cf 3f3c9af 4088dea eea98cf a294533 eea98cf 06dc2f1 eea98cf 4088dea a294533 06dc2f1 393ce87 eb249f4 393ce87 eea98cf 4088dea eea98cf a294533 64e8d9c eea98cf a294533 393ce87 a294533 eea98cf a294533 06dc2f1 a294533 06dc2f1 eea98cf 393ce87 06dc2f1 eea98cf 565e834 06dc2f1 0637793 c8a5a1f 06dc2f1 eea98cf 06dc2f1 eea98cf 06dc2f1 eea98cf 06dc2f1 eea98cf 4f72e24 eea98cf 4f72e24 eea98cf 06dc2f1 eea98cf 06dc2f1 4f72e24 eea98cf 06dc2f1 eea98cf 06dc2f1 eea98cf 06dc2f1 eea98cf 06dc2f1 eea98cf 7c9f89e 06dc2f1 c3b4d73 06dc2f1 eea98cf 565e834 eea98cf 06dc2f1 f516184 3f3c9af 06dc2f1 a294533 06dc2f1 a294533 06dc2f1 a294533 06dc2f1 eea98cf 06dc2f1 eea98cf 06dc2f1 a294533 06dc2f1 a294533 06dc2f1 565e834 06dc2f1 348c3b8 eea98cf 4088dea 06dc2f1 a294533 06dc2f1 a294533 06dc2f1 a294533 06dc2f1 64e8d9c 4f72e24 eea98cf 565e834 eea98cf 565e834 eea98cf 4f72e24 eea98cf 4f72e24 06dc2f1 4f72e24 c18e9c8 4f72e24 c18e9c8 06dc2f1 4f72e24 c18e9c8 4f72e24 c18e9c8 4f72e24 06dc2f1 c18e9c8 4f72e24 eea98cf 4f72e24 eea98cf 4f72e24 eea98cf 06dc2f1 eea98cf 06dc2f1 565e834 06dc2f1 565e834 06dc2f1 c8a5a1f 06dc2f1 eea98cf eb249f4 64e8d9c a294533 eea98cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import base64
import json
import os
import secrets
import string
import time
import tempfile
import ast
from typing import List, Optional, Union, Any
import httpx
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel, Field, model_validator
# Import for OCR functionality
from gradio_client import Client, handle_file
# --- Configuration ---
load_dotenv()
# Environment variables for external services
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
SNAPZION_API_KEY = os.environ.get("SNAP", "")
CHAT_API_URL = "https://www.chatwithmono.xyz/api/chat"
IMAGE_GEN_API_URL = "https://www.chatwithmono.xyz/api/image"
MODERATION_API_URL = "https://www.chatwithmono.xyz/api/moderation"
# --- Model Definitions ---
AVAILABLE_MODELS = [
{"id": "gpt-4-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "gpt-4o", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "gpt-3.5-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "dall-e-3", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "text-moderation-stable", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "florence-2-ocr", "object": "model", "created": int(time.time()), "owned_by": "system"},
]
MODEL_ALIASES = {}
# --- FastAPI Application & Global Clients ---
app = FastAPI(
title="OpenAI Compatible API",
description="An adapter for various services to be compatible with the OpenAI API specification.",
version="1.1.3" # Version reflects final formatting and fixes
)
# Initialize Gradio client globally to avoid re-initialization on each request
try:
ocr_client = Client("multimodalart/Florence-2-l4")
except Exception as e:
print(f"Warning: Could not initialize Gradio client for OCR: {e}")
ocr_client = None
# --- Pydantic Models ---
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
messages: List[Message]
model: str
stream: Optional[bool] = False
tools: Optional[Any] = None
class ImageGenerationRequest(BaseModel):
prompt: str
aspect_ratio: Optional[str] = "1:1"
n: Optional[int] = 1
user: Optional[str] = None
model: Optional[str] = "default"
class ModerationRequest(BaseModel):
input: Union[str, List[str]]
model: Optional[str] = "text-moderation-stable"
class OcrRequest(BaseModel):
image_url: Optional[str] = Field(None, description="URL of the image to process.")
image_b64: Optional[str] = Field(None, description="Base64 encoded string of the image to process.")
@model_validator(mode='before')
@classmethod
def check_sources(cls, data: Any) -> Any:
if isinstance(data, dict):
if not (data.get('image_url') or data.get('image_b64')):
raise ValueError('Either image_url or image_b64 must be provided.')
if data.get('image_url') and data.get('image_b64'):
raise ValueError('Provide either image_url or image_b64, not both.')
return data
class OcrResponse(BaseModel):
ocr_text: str
raw_response: dict
# --- Helper Function ---
def generate_random_id(prefix: str, length: int = 29) -> str:
"""Generates a cryptographically secure, random alphanumeric ID."""
population = string.ascii_letters + string.digits
random_part = "".join(secrets.choice(population) for _ in range(length))
return f"{prefix}{random_part}"
# === API Endpoints ===
@app.get("/v1/models", tags=["Models"])
async def list_models():
"""Lists the available models."""
return {"object": "list", "data": AVAILABLE_MODELS}
@app.post("/v1/chat/completions", tags=["Chat"])
async def chat_completion(request: ChatRequest):
"""Handles chat completion requests, supporting streaming and non-streaming."""
model_id = MODEL_ALIASES.get(request.model, request.model)
chat_id = generate_random_id("chatcmpl-")
headers = {
'accept': 'text/event-stream',
'content-type': 'application/json',
'origin': 'https://www.chatwithmono.xyz',
'referer': 'https://www.chatwithmono.xyz/',
'user-agent': 'Mozilla/5.0',
}
if request.tools:
tool_prompt = f"""You have access to the following tools. To call a tool, please respond with JSON for a tool call within <tool_call></tool_call> XML tags. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
Tools: {";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
Response Format for tool call:
<tool_call>
{{"name": <function-name>, "arguments": <args-json-object>}}
</tool_call>"""
if request.messages[0].role == "system":
request.messages[0].content += "\n\n" + tool_prompt
else:
request.messages.insert(0, Message(role="system", content=tool_prompt))
payload = {"messages": [msg.model_dump() for msg in request.messages], "model": model_id}
if request.stream:
async def event_stream():
created = int(time.time())
usage_info = None
is_first_chunk = True
tool_call_buffer = ""
in_tool_call = False
try:
async with httpx.AsyncClient(timeout=120) as client:
async with client.stream("POST", CHAT_API_URL, headers=headers, json=payload) as response:
response.raise_for_status()
async for line in response.aiter_lines():
if not line:
continue
if line.startswith("0:"):
try:
content_piece = json.loads(line[2:])
except json.JSONDecodeError:
continue
current_buffer = content_piece
if in_tool_call:
current_buffer = tool_call_buffer + content_piece
if "</tool_call>" in current_buffer:
tool_str = current_buffer.split("<tool_call>")[1].split("</tool_call>")[0]
tool_json = json.loads(tool_str.strip())
delta = {
"content": None,
"tool_calls": [{"index": 0, "id": generate_random_id("call_"), "type": "function",
"function": {"name": tool_json["name"], "arguments": json.dumps(tool_json["parameters"])}}]
}
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
yield f"data: {json.dumps(chunk)}\n\n"
in_tool_call = False
tool_call_buffer = ""
remaining_text = current_buffer.split("</tool_call>", 1)[1]
if remaining_text:
content_piece = remaining_text
else:
continue
if "<tool_call>" in content_piece:
in_tool_call = True
tool_call_buffer += content_piece.split("<tool_call>", 1)[1]
text_before = content_piece.split("<tool_call>", 1)[0]
if text_before:
delta = {"content": text_before, "tool_calls": None}
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
yield f"data: {json.dumps(chunk)}\n\n"
if "</tool_call>" not in tool_call_buffer:
continue
if not in_tool_call:
delta = {"content": content_piece}
if is_first_chunk:
delta["role"] = "assistant"
is_first_chunk = False
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
yield f"data: {json.dumps(chunk)}\n\n"
elif line.startswith(("e:", "d:")):
try:
usage_info = json.loads(line[2:]).get("usage")
except (json.JSONDecodeError, AttributeError):
pass
break
final_usage = None
if usage_info:
prompt_tokens = usage_info.get("promptTokens", 0)
completion_tokens = usage_info.get("completionTokens", 0)
final_usage = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
finish_reason = "tool_calls" if in_tool_call else "stop"
done_chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
"choices": [{"index": 0, "delta": {}, "finish_reason": finish_reason}], "usage": final_usage}
yield f"data: {json.dumps(done_chunk)}\n\n"
except httpx.HTTPStatusError as e:
error_content = {"error": {"message": f"Upstream API error: {e.response.status_code}. Details: {e.response.text}", "type": "upstream_error", "code": str(e.response.status_code)}}
yield f"data: {json.dumps(error_content)}\n\n"
finally:
yield "data: [DONE]\n\n"
return StreamingResponse(event_stream(), media_type="text/event-stream")
else: # Non-streaming response
full_response, usage_info = "", {}
try:
async with httpx.AsyncClient(timeout=120) as client:
async with client.stream("POST", CHAT_API_URL, headers=headers, json=payload) as response:
response.raise_for_status()
async for chunk in response.aiter_lines():
if chunk.startswith("0:"):
try:
full_response += json.loads(chunk[2:])
except:
continue
elif chunk.startswith(("e:", "d:")):
try:
usage_info = json.loads(chunk[2:]).get("usage", {})
except:
continue
tool_calls = None
content_response = full_response
finish_reason = "stop"
if "<tool_call>" in full_response and "</tool_call>" in full_response:
tool_call_str = full_response.split("<tool_call>")[1].split("</tool_call>")[0]
tool_call = json.loads(tool_call_str.strip())
tool_calls = [{
"id": generate_random_id("call_"),
"type": "function",
"function": {
"name": tool_call["name"],
"arguments": json.dumps(tool_call["parameters"])
}
}]
content_response = None
finish_reason = "tool_calls"
prompt_tokens = usage_info.get("promptTokens", 0)
completion_tokens = usage_info.get("completionTokens", 0)
return JSONResponse(content={
"id": chat_id,
"object": "chat.completion",
"created": int(time.time()),
"model": model_id,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": content_response,
"tool_calls": tool_calls
},
"finish_reason": finish_reason
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
})
except httpx.HTTPStatusError as e:
return JSONResponse(
status_code=e.response.status_code,
content={"error": {"message": f"Upstream API error. Details: {e.response.text}", "type": "upstream_error"}}
)
@app.post("/v1/images/generations", tags=["Images"])
async def generate_images(request: ImageGenerationRequest):
"""Handles image generation requests."""
results = []
try:
async with httpx.AsyncClient(timeout=120) as client:
for _ in range(request.n):
model = request.model or "default"
if model in ["gpt-image-1", "dall-e-3", "dall-e-2", "nextlm-image-1"]:
headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
payload = {"prompt": request.prompt, "model": model}
resp = await client.post(IMAGE_GEN_API_URL, headers=headers, json=payload)
resp.raise_for_status()
data = resp.json()
b64_image = data.get("image")
if not b64_image:
return JSONResponse(status_code=502, content={"error": "Missing base64 image in response"})
image_url = f"data:image/png;base64,{b64_image}"
if SNAPZION_API_KEY:
upload_headers = {"Authorization": SNAPZION_API_KEY}
upload_files = {'file': ('image.png', base64.b64decode(b64_image), 'image/png')}
upload_resp = await client.post(SNAPZION_UPLOAD_URL, headers=upload_headers, files=upload_files)
if upload_resp.status_code == 200:
image_url = upload_resp.json().get("url", image_url)
results.append({"url": image_url, "b64_json": b64_image, "revised_prompt": data.get("revised_prompt")})
else:
params = {"prompt": request.prompt, "aspect_ratio": request.aspect_ratio, "link": "typegpt.net"}
resp = await client.get(IMAGE_API_URL, params=params)
resp.raise_for_status()
data = resp.json()
results.append({"url": data.get("image_link"), "b64_json": data.get("base64_output")})
except httpx.HTTPStatusError as e:
return JSONResponse(status_code=502, content={"error": f"Image generation failed. Upstream error: {e.response.status_code}", "details": e.response.text})
except Exception as e:
return JSONResponse(status_code=500, content={"error": "An internal error occurred.", "details": str(e)})
return {"created": int(time.time()), "data": results}
@app.post("/v1/ocr", response_model=OcrResponse, tags=["OCR"])
async def perform_ocr(request: OcrRequest):
"""
Performs Optical Character Recognition (OCR) on an image using the Florence-2 model.
Provide an image via a URL or a base64 encoded string.
"""
if not ocr_client:
raise HTTPException(status_code=503, detail="OCR service is not available. Gradio client failed to initialize.")
image_path, temp_file_path = None, None
try:
if request.image_url:
image_path = request.image_url
elif request.image_b64:
image_bytes = base64.b64decode(request.image_b64)
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
temp_file.write(image_bytes)
temp_file_path = temp_file.name
image_path = temp_file_path
prediction = ocr_client.predict(image=handle_file(image_path), task_prompt="OCR", api_name="/process_image")
if not prediction or not isinstance(prediction, tuple) or len(prediction) == 0:
raise HTTPException(status_code=502, detail="Invalid or empty response from OCR service.")
raw_output = prediction[0]
raw_result_dict = {}
# --- Robust Parsing Logic ---
if isinstance(raw_output, str):
try:
# First, try to parse as standard JSON
raw_result_dict = json.loads(raw_output)
except json.JSONDecodeError:
try:
# If JSON fails, try to evaluate as a Python literal (handles single quotes)
parsed_output = ast.literal_eval(raw_output)
if isinstance(parsed_output, dict):
raw_result_dict = parsed_output
else:
# The literal is something else (e.g., a list), wrap it.
raw_result_dict = {"result": str(parsed_output)}
except (ValueError, SyntaxError):
# If all parsing fails, assume the string is the direct OCR text.
raw_result_dict = {"ocr_text_from_string": raw_output}
elif isinstance(raw_output, dict):
# It's already a dictionary, use it directly
raw_result_dict = raw_output
else:
# Handle other unexpected data types
raise HTTPException(status_code=502, detail=f"Unexpected data type from OCR service: {type(raw_output)}")
# Extract text from the dictionary, with multiple fallbacks
ocr_text = raw_result_dict.get("OCR",
raw_result_dict.get("ocr_text_from_string",
str(raw_result_dict)))
return OcrResponse(ocr_text=ocr_text, raw_response=raw_result_dict)
except Exception as e:
if isinstance(e, HTTPException):
raise e
raise HTTPException(status_code=500, detail=f"An error occurred during OCR processing: {str(e)}")
finally:
if temp_file_path and os.path.exists(temp_file_path):
os.unlink(temp_file_path)
@app.post("/v1/moderations", tags=["Moderation"])
async def create_moderation(request: ModerationRequest):
"""Handles moderation requests, conforming to the OpenAI API specification."""
input_texts = [request.input] if isinstance(request.input, str) else request.input
if not input_texts:
return JSONResponse(status_code=400, content={"error": {"message": "Request must have at least one input string."}})
headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
results = []
try:
async with httpx.AsyncClient(timeout=30) as client:
for text_input in input_texts:
payload = {"text": text_input}
resp = await client.post(MODERATION_API_URL, headers=headers, json=payload)
resp.raise_for_status()
upstream_data = resp.json()
upstream_categories = upstream_data.get("categories", {})
openai_categories = {
"hate": upstream_categories.get("hate", False),
"hate/threatening": False,
"harassment": False,
"harassment/threatening": False,
"self-harm": upstream_categories.get("self-harm", False),
"self-harm/intent": False,
"self-harm/instructions": False,
"sexual": upstream_categories.get("sexual", False),
"sexual/minors": False,
"violence": upstream_categories.get("violence", False),
"violence/graphic": False,
}
result_item = {
"flagged": upstream_data.get("overall_sentiment") == "flagged",
"categories": openai_categories,
"category_scores": {k: 1.0 if v else 0.0 for k, v in openai_categories.items()},
}
if reason := upstream_data.get("reason"):
result_item["reason"] = reason
results.append(result_item)
except httpx.HTTPStatusError as e:
return JSONResponse(
status_code=502,
content={"error": {"message": f"Moderation failed. Upstream error: {e.response.status_code}", "details": e.response.text}}
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": {"message": "An internal error occurred during moderation.", "details": str(e)}}
)
final_response = {
"id": generate_random_id("modr-"),
"model": request.model,
"results": results,
}
return JSONResponse(content=final_response)
# --- Main Execution ---
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |