File size: 22,668 Bytes
a294533
0637793
4088dea
64e8d9c
 
a294533
eea98cf
06dc2f1
348c3b8
eea98cf
3f3c9af
4088dea
eea98cf
a294533
eea98cf
 
06dc2f1
eea98cf
4088dea
a294533
 
06dc2f1
 
393ce87
eb249f4
393ce87
eea98cf
 
 
4088dea
eea98cf
a294533
 
 
 
 
64e8d9c
eea98cf
a294533
393ce87
a294533
eea98cf
a294533
 
 
06dc2f1
a294533
06dc2f1
 
eea98cf
 
 
 
 
393ce87
06dc2f1
eea98cf
565e834
 
 
06dc2f1
0637793
 
 
 
c8a5a1f
06dc2f1
eea98cf
 
 
 
 
 
06dc2f1
eea98cf
 
 
06dc2f1
eea98cf
 
 
06dc2f1
eea98cf
 
 
 
4f72e24
eea98cf
4f72e24
eea98cf
 
06dc2f1
eea98cf
 
 
 
06dc2f1
4f72e24
eea98cf
06dc2f1
eea98cf
 
 
 
06dc2f1
eea98cf
 
 
 
06dc2f1
eea98cf
 
06dc2f1
eea98cf
7c9f89e
06dc2f1
 
 
 
 
 
 
 
 
 
 
c3b4d73
06dc2f1
eea98cf
565e834
 
 
eea98cf
06dc2f1
 
 
 
 
 
 
f516184
3f3c9af
06dc2f1
 
 
 
 
 
a294533
06dc2f1
 
a294533
 
06dc2f1
 
 
a294533
06dc2f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eea98cf
06dc2f1
 
 
 
 
 
 
eea98cf
06dc2f1
 
 
 
 
 
 
 
 
 
 
 
 
a294533
06dc2f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a294533
06dc2f1
 
565e834
 
 
06dc2f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348c3b8
eea98cf
4088dea
06dc2f1
 
a294533
06dc2f1
a294533
06dc2f1
 
 
 
 
 
 
 
 
 
 
 
a294533
06dc2f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64e8d9c
4f72e24
eea98cf
 
565e834
eea98cf
 
565e834
eea98cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f72e24
 
eea98cf
4f72e24
 
 
06dc2f1
4f72e24
 
c18e9c8
4f72e24
 
c18e9c8
 
 
 
 
 
 
 
 
 
06dc2f1
4f72e24
c18e9c8
4f72e24
 
c18e9c8
4f72e24
 
06dc2f1
 
 
 
c18e9c8
4f72e24
 
eea98cf
4f72e24
 
eea98cf
 
4f72e24
eea98cf
 
06dc2f1
eea98cf
 
06dc2f1
 
 
 
 
 
 
 
565e834
06dc2f1
565e834
06dc2f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8a5a1f
06dc2f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eea98cf
eb249f4
64e8d9c
a294533
 
eea98cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import base64
import json
import os
import secrets
import string
import time
import tempfile
import ast
from typing import List, Optional, Union, Any

import httpx
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel, Field, model_validator

# Import for OCR functionality
from gradio_client import Client, handle_file

# --- Configuration ---
load_dotenv()

# Environment variables for external services
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
SNAPZION_API_KEY = os.environ.get("SNAP", "")
CHAT_API_URL = "https://www.chatwithmono.xyz/api/chat"
IMAGE_GEN_API_URL = "https://www.chatwithmono.xyz/api/image"
MODERATION_API_URL = "https://www.chatwithmono.xyz/api/moderation"

# --- Model Definitions ---
AVAILABLE_MODELS = [
    {"id": "gpt-4-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
    {"id": "gpt-4o", "object": "model", "created": int(time.time()), "owned_by": "system"},
    {"id": "gpt-3.5-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
    {"id": "dall-e-3", "object": "model", "created": int(time.time()), "owned_by": "system"},
    {"id": "text-moderation-stable", "object": "model", "created": int(time.time()), "owned_by": "system"},
    {"id": "florence-2-ocr", "object": "model", "created": int(time.time()), "owned_by": "system"},
]
MODEL_ALIASES = {}

# --- FastAPI Application & Global Clients ---
app = FastAPI(
    title="OpenAI Compatible API",
    description="An adapter for various services to be compatible with the OpenAI API specification.",
    version="1.1.3"  # Version reflects final formatting and fixes
)

# Initialize Gradio client globally to avoid re-initialization on each request
try:
    ocr_client = Client("multimodalart/Florence-2-l4")
except Exception as e:
    print(f"Warning: Could not initialize Gradio client for OCR: {e}")
    ocr_client = None


# --- Pydantic Models ---
class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    messages: List[Message]
    model: str
    stream: Optional[bool] = False
    tools: Optional[Any] = None

class ImageGenerationRequest(BaseModel):
    prompt: str
    aspect_ratio: Optional[str] = "1:1"
    n: Optional[int] = 1
    user: Optional[str] = None
    model: Optional[str] = "default"

class ModerationRequest(BaseModel):
    input: Union[str, List[str]]
    model: Optional[str] = "text-moderation-stable"

class OcrRequest(BaseModel):
    image_url: Optional[str] = Field(None, description="URL of the image to process.")
    image_b64: Optional[str] = Field(None, description="Base64 encoded string of the image to process.")

    @model_validator(mode='before')
    @classmethod
    def check_sources(cls, data: Any) -> Any:
        if isinstance(data, dict):
            if not (data.get('image_url') or data.get('image_b64')):
                raise ValueError('Either image_url or image_b64 must be provided.')
            if data.get('image_url') and data.get('image_b64'):
                raise ValueError('Provide either image_url or image_b64, not both.')
        return data

class OcrResponse(BaseModel):
    ocr_text: str
    raw_response: dict


# --- Helper Function ---
def generate_random_id(prefix: str, length: int = 29) -> str:
    """Generates a cryptographically secure, random alphanumeric ID."""
    population = string.ascii_letters + string.digits
    random_part = "".join(secrets.choice(population) for _ in range(length))
    return f"{prefix}{random_part}"


# === API Endpoints ===

@app.get("/v1/models", tags=["Models"])
async def list_models():
    """Lists the available models."""
    return {"object": "list", "data": AVAILABLE_MODELS}


@app.post("/v1/chat/completions", tags=["Chat"])
async def chat_completion(request: ChatRequest):
    """Handles chat completion requests, supporting streaming and non-streaming."""
    model_id = MODEL_ALIASES.get(request.model, request.model)
    chat_id = generate_random_id("chatcmpl-")
    headers = {
        'accept': 'text/event-stream',
        'content-type': 'application/json',
        'origin': 'https://www.chatwithmono.xyz',
        'referer': 'https://www.chatwithmono.xyz/',
        'user-agent': 'Mozilla/5.0',
    }

    if request.tools:
        tool_prompt = f"""You have access to the following tools. To call a tool, please respond with JSON for a tool call within <tool_call></tool_call> XML tags. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
Tools: {";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
Response Format for tool call:
<tool_call>
{{"name": <function-name>, "arguments": <args-json-object>}}
</tool_call>"""
        if request.messages[0].role == "system":
            request.messages[0].content += "\n\n" + tool_prompt
        else:
            request.messages.insert(0, Message(role="system", content=tool_prompt))

    payload = {"messages": [msg.model_dump() for msg in request.messages], "model": model_id}

    if request.stream:
        async def event_stream():
            created = int(time.time())
            usage_info = None
            is_first_chunk = True
            tool_call_buffer = ""
            in_tool_call = False

            try:
                async with httpx.AsyncClient(timeout=120) as client:
                    async with client.stream("POST", CHAT_API_URL, headers=headers, json=payload) as response:
                        response.raise_for_status()
                        async for line in response.aiter_lines():
                            if not line:
                                continue

                            if line.startswith("0:"):
                                try:
                                    content_piece = json.loads(line[2:])
                                except json.JSONDecodeError:
                                    continue
                                
                                current_buffer = content_piece
                                if in_tool_call:
                                    current_buffer = tool_call_buffer + content_piece

                                if "</tool_call>" in current_buffer:
                                    tool_str = current_buffer.split("<tool_call>")[1].split("</tool_call>")[0]
                                    tool_json = json.loads(tool_str.strip())
                                    delta = {
                                        "content": None,
                                        "tool_calls": [{"index": 0, "id": generate_random_id("call_"), "type": "function",
                                                        "function": {"name": tool_json["name"], "arguments": json.dumps(tool_json["parameters"])}}]
                                    }
                                    chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
                                             "choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
                                    yield f"data: {json.dumps(chunk)}\n\n"
                                    
                                    in_tool_call = False
                                    tool_call_buffer = ""
                                    remaining_text = current_buffer.split("</tool_call>", 1)[1]
                                    if remaining_text:
                                        content_piece = remaining_text
                                    else:
                                        continue

                                if "<tool_call>" in content_piece:
                                    in_tool_call = True
                                    tool_call_buffer += content_piece.split("<tool_call>", 1)[1]
                                    text_before = content_piece.split("<tool_call>", 1)[0]
                                    if text_before:
                                        delta = {"content": text_before, "tool_calls": None}
                                        chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
                                                 "choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
                                        yield f"data: {json.dumps(chunk)}\n\n"
                                    if "</tool_call>" not in tool_call_buffer:
                                        continue
                                
                                if not in_tool_call:
                                    delta = {"content": content_piece}
                                    if is_first_chunk:
                                        delta["role"] = "assistant"
                                        is_first_chunk = False
                                    chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
                                             "choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
                                    yield f"data: {json.dumps(chunk)}\n\n"

                            elif line.startswith(("e:", "d:")):
                                try:
                                    usage_info = json.loads(line[2:]).get("usage")
                                except (json.JSONDecodeError, AttributeError):
                                    pass
                                break
                        
                        final_usage = None
                        if usage_info:
                            prompt_tokens = usage_info.get("promptTokens", 0)
                            completion_tokens = usage_info.get("completionTokens", 0)
                            final_usage = {
                                "prompt_tokens": prompt_tokens,
                                "completion_tokens": completion_tokens,
                                "total_tokens": prompt_tokens + completion_tokens
                            }
                        
                        finish_reason = "tool_calls" if in_tool_call else "stop"
                        done_chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
                                      "choices": [{"index": 0, "delta": {}, "finish_reason": finish_reason}], "usage": final_usage}
                        yield f"data: {json.dumps(done_chunk)}\n\n"

            except httpx.HTTPStatusError as e:
                error_content = {"error": {"message": f"Upstream API error: {e.response.status_code}. Details: {e.response.text}", "type": "upstream_error", "code": str(e.response.status_code)}}
                yield f"data: {json.dumps(error_content)}\n\n"
            finally:
                yield "data: [DONE]\n\n"
        
        return StreamingResponse(event_stream(), media_type="text/event-stream")
    
    else:  # Non-streaming response
        full_response, usage_info = "", {}
        try:
            async with httpx.AsyncClient(timeout=120) as client:
                async with client.stream("POST", CHAT_API_URL, headers=headers, json=payload) as response:
                    response.raise_for_status()
                    async for chunk in response.aiter_lines():
                        if chunk.startswith("0:"):
                            try:
                                full_response += json.loads(chunk[2:])
                            except:
                                continue
                        elif chunk.startswith(("e:", "d:")):
                            try:
                                usage_info = json.loads(chunk[2:]).get("usage", {})
                            except:
                                continue

            tool_calls = None
            content_response = full_response
            finish_reason = "stop"
            if "<tool_call>" in full_response and "</tool_call>" in full_response:
                tool_call_str = full_response.split("<tool_call>")[1].split("</tool_call>")[0]
                tool_call = json.loads(tool_call_str.strip())
                tool_calls = [{
                    "id": generate_random_id("call_"),
                    "type": "function",
                    "function": {
                        "name": tool_call["name"],
                        "arguments": json.dumps(tool_call["parameters"])
                    }
                }]
                content_response = None
                finish_reason = "tool_calls"

            prompt_tokens = usage_info.get("promptTokens", 0)
            completion_tokens = usage_info.get("completionTokens", 0)
            
            return JSONResponse(content={
                "id": chat_id,
                "object": "chat.completion",
                "created": int(time.time()),
                "model": model_id,
                "choices": [{
                    "index": 0,
                    "message": {
                        "role": "assistant",
                        "content": content_response,
                        "tool_calls": tool_calls
                    },
                    "finish_reason": finish_reason
                }],
                "usage": {
                    "prompt_tokens": prompt_tokens,
                    "completion_tokens": completion_tokens,
                    "total_tokens": prompt_tokens + completion_tokens
                }
            })
        except httpx.HTTPStatusError as e:
            return JSONResponse(
                status_code=e.response.status_code,
                content={"error": {"message": f"Upstream API error. Details: {e.response.text}", "type": "upstream_error"}}
            )


@app.post("/v1/images/generations", tags=["Images"])
async def generate_images(request: ImageGenerationRequest):
    """Handles image generation requests."""
    results = []
    try:
        async with httpx.AsyncClient(timeout=120) as client:
            for _ in range(request.n):
                model = request.model or "default"
                if model in ["gpt-image-1", "dall-e-3", "dall-e-2", "nextlm-image-1"]:
                    headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
                    payload = {"prompt": request.prompt, "model": model}
                    resp = await client.post(IMAGE_GEN_API_URL, headers=headers, json=payload)
                    resp.raise_for_status()
                    data = resp.json()
                    b64_image = data.get("image")
                    if not b64_image:
                        return JSONResponse(status_code=502, content={"error": "Missing base64 image in response"})
                    
                    image_url = f"data:image/png;base64,{b64_image}"
                    if SNAPZION_API_KEY:
                        upload_headers = {"Authorization": SNAPZION_API_KEY}
                        upload_files = {'file': ('image.png', base64.b64decode(b64_image), 'image/png')}
                        upload_resp = await client.post(SNAPZION_UPLOAD_URL, headers=upload_headers, files=upload_files)
                        if upload_resp.status_code == 200:
                            image_url = upload_resp.json().get("url", image_url)
                    
                    results.append({"url": image_url, "b64_json": b64_image, "revised_prompt": data.get("revised_prompt")})
                else:
                    params = {"prompt": request.prompt, "aspect_ratio": request.aspect_ratio, "link": "typegpt.net"}
                    resp = await client.get(IMAGE_API_URL, params=params)
                    resp.raise_for_status()
                    data = resp.json()
                    results.append({"url": data.get("image_link"), "b64_json": data.get("base64_output")})
    except httpx.HTTPStatusError as e:
        return JSONResponse(status_code=502, content={"error": f"Image generation failed. Upstream error: {e.response.status_code}", "details": e.response.text})
    except Exception as e:
        return JSONResponse(status_code=500, content={"error": "An internal error occurred.", "details": str(e)})

    return {"created": int(time.time()), "data": results}


@app.post("/v1/ocr", response_model=OcrResponse, tags=["OCR"])
async def perform_ocr(request: OcrRequest):
    """
    Performs Optical Character Recognition (OCR) on an image using the Florence-2 model.
    Provide an image via a URL or a base64 encoded string.
    """
    if not ocr_client:
        raise HTTPException(status_code=503, detail="OCR service is not available. Gradio client failed to initialize.")

    image_path, temp_file_path = None, None
    try:
        if request.image_url:
            image_path = request.image_url
        elif request.image_b64:
            image_bytes = base64.b64decode(request.image_b64)
            with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
                temp_file.write(image_bytes)
                temp_file_path = temp_file.name
            image_path = temp_file_path

        prediction = ocr_client.predict(image=handle_file(image_path), task_prompt="OCR", api_name="/process_image")
        
        if not prediction or not isinstance(prediction, tuple) or len(prediction) == 0:
             raise HTTPException(status_code=502, detail="Invalid or empty response from OCR service.")
        
        raw_output = prediction[0]
        raw_result_dict = {}

        # --- Robust Parsing Logic ---
        if isinstance(raw_output, str):
            try:
                # First, try to parse as standard JSON
                raw_result_dict = json.loads(raw_output)
            except json.JSONDecodeError:
                try:
                    # If JSON fails, try to evaluate as a Python literal (handles single quotes)
                    parsed_output = ast.literal_eval(raw_output)
                    if isinstance(parsed_output, dict):
                        raw_result_dict = parsed_output
                    else:
                        # The literal is something else (e.g., a list), wrap it.
                        raw_result_dict = {"result": str(parsed_output)}
                except (ValueError, SyntaxError):
                    # If all parsing fails, assume the string is the direct OCR text.
                    raw_result_dict = {"ocr_text_from_string": raw_output}
        elif isinstance(raw_output, dict):
            # It's already a dictionary, use it directly
            raw_result_dict = raw_output
        else:
            # Handle other unexpected data types
            raise HTTPException(status_code=502, detail=f"Unexpected data type from OCR service: {type(raw_output)}")

        # Extract text from the dictionary, with multiple fallbacks
        ocr_text = raw_result_dict.get("OCR", 
                   raw_result_dict.get("ocr_text_from_string", 
                   str(raw_result_dict)))
        
        return OcrResponse(ocr_text=ocr_text, raw_response=raw_result_dict)

    except Exception as e:
        if isinstance(e, HTTPException):
            raise e
        raise HTTPException(status_code=500, detail=f"An error occurred during OCR processing: {str(e)}")
    finally:
        if temp_file_path and os.path.exists(temp_file_path):
            os.unlink(temp_file_path)


@app.post("/v1/moderations", tags=["Moderation"])
async def create_moderation(request: ModerationRequest):
    """Handles moderation requests, conforming to the OpenAI API specification."""
    input_texts = [request.input] if isinstance(request.input, str) else request.input
    if not input_texts:
         return JSONResponse(status_code=400, content={"error": {"message": "Request must have at least one input string."}})

    headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
    results = []
    
    try:
        async with httpx.AsyncClient(timeout=30) as client:
            for text_input in input_texts:
                payload = {"text": text_input}
                resp = await client.post(MODERATION_API_URL, headers=headers, json=payload)
                resp.raise_for_status()
                
                upstream_data = resp.json()
                upstream_categories = upstream_data.get("categories", {})
                
                openai_categories = {
                    "hate": upstream_categories.get("hate", False),
                    "hate/threatening": False,
                    "harassment": False,
                    "harassment/threatening": False,
                    "self-harm": upstream_categories.get("self-harm", False),
                    "self-harm/intent": False,
                    "self-harm/instructions": False,
                    "sexual": upstream_categories.get("sexual", False),
                    "sexual/minors": False,
                    "violence": upstream_categories.get("violence", False),
                    "violence/graphic": False,
                }
                
                result_item = {
                    "flagged": upstream_data.get("overall_sentiment") == "flagged",
                    "categories": openai_categories,
                    "category_scores": {k: 1.0 if v else 0.0 for k, v in openai_categories.items()},
                }
                
                if reason := upstream_data.get("reason"):
                    result_item["reason"] = reason
                
                results.append(result_item)

    except httpx.HTTPStatusError as e:
        return JSONResponse(
            status_code=502,
            content={"error": {"message": f"Moderation failed. Upstream error: {e.response.status_code}", "details": e.response.text}}
        )
    except Exception as e:
        return JSONResponse(
            status_code=500,
            content={"error": {"message": "An internal error occurred during moderation.", "details": str(e)}}
        )
    
    final_response = {
        "id": generate_random_id("modr-"),
        "model": request.model,
        "results": results,
    }
    return JSONResponse(content=final_response)


# --- Main Execution ---
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)