Mono / main.py
AIMaster7's picture
Update main.py
565e834 verified
raw
history blame
19.9 kB
import base64
import json
import os
import secrets
import string
import time
from typing import List, Optional, Union, Any
import httpx
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel
# --- Configuration ---
load_dotenv()
# Env variables for external services
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
SNAPZION_API_KEY = os.environ.get("SNAP", "")
# --- Dummy Model Definitions ---
# In a real application, these would be defined properly.
AVAILABLE_MODELS = [
{"id": "gpt-4-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "gpt-4o", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "gpt-3.5-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "dall-e-3", "object": "model", "created": int(time.time()), "owned_by": "system"},
{"id": "text-moderation-stable", "object": "model", "created": int(time.time()), "owned_by": "system"},
]
MODEL_ALIASES = {}
# --- FastAPI Application ---
app = FastAPI(
title="OpenAI Compatible API",
description="An adapter for various services to be compatible with the OpenAI API specification.",
version="1.0.0"
)
# --- Helper Function for Random ID Generation ---
def generate_random_id(prefix: str, length: int = 29) -> str:
"""
Generates a cryptographically secure, random alphanumeric ID.
"""
population = string.ascii_letters + string.digits
random_part = "".join(secrets.choice(population) for _ in range(length))
return f"{prefix}{random_part}"
# === API Endpoints ===
@app.get("/v1/models")
async def list_models():
"""Lists the available models."""
return {"object": "list", "data": AVAILABLE_MODELS}
# === Chat Completion ===
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
messages: List[Message]
model: str
stream: Optional[bool] = False
tools: Optional[Any] = None
@app.post("/v1/chat/completions")
async def chat_completion(request: ChatRequest):
"""
Handles chat completion requests, supporting both streaming and non-streaming responses.
"""
model_id = MODEL_ALIASES.get(request.model, request.model)
chat_id = generate_random_id("chatcmpl-")
headers = {
'accept': 'text/event-stream',
'content-type': 'application/json',
'origin': 'https://www.chatwithmono.xyz',
'referer': 'https://www.chatwithmono.xyz/',
'user-agent': 'Mozilla/5.0',
}
if request.tools:
# Handle tool by giving in system prompt.
# Tool call must be encoded in <tool_call><tool_call> XML tag.
tool_prompt = f"""You have access to the following tools . To call a tool, please respond with JSON for a tool call within <tool_call><tool_call> XML tag. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
Tools:
{";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
Response Format for tool call:
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{{"name": <function-name>, "arguments": <args-json-object>}}
</tool_call>
Example of tool calling:
<tool_call>
{{"name": "get_weather", "parameters": {{"city": "New York"}}}}
</tool_call>
Using tools is recommended.
"""
if request.messages[0].role == "system":
request.messages[0].content += "\n\n" + tool_prompt
else:
request.messages.insert(0, {"role": "system", "content": tool_prompt})
request_data = request.model_dump(exclude_unset=True)
payload = {
"messages": request_data["messages"],
"model": model_id
}
if request.stream:
async def event_stream():
created = int(time.time())
is_first_chunk = True
usage_info = None
is_tool_call = False
chunks_buffer = []
max_initial_chunks = 4 # Number of initial chunks to buffer
try:
async with httpx.AsyncClient(timeout=120) as client:
async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat", headers=headers, json=payload) as response:
response.raise_for_status()
async for line in response.aiter_lines():
if not line: continue
if line.startswith("0:"):
try:
content_piece = json.loads(line[2:])
print(content_piece)
# Buffer the first few chunks
if len(chunks_buffer) < max_initial_chunks:
chunks_buffer.append(content_piece)
continue
# Process the buffered chunks if we haven't already
if chunks_buffer and not is_tool_call:
full_buffer = ''.join(chunks_buffer)
if "<tool_call>" in full_buffer:
print("Tool call detected")
is_tool_call = True
# Process the current chunk
if is_tool_call:
chunks_buffer.append(content_piece)
full_buffer = ''.join(chunks_buffer)
if "</tool_call>" in full_buffer:
print("Tool call End detected")
# Process tool call in the current chunk
tool_call_str = full_buffer.split("<tool_call>")[1].split("</tool_call>")[0]
tool_call_json = json.loads(tool_call_str.strip())
delta = {
"content": None,
"tool_calls": [{
"index": 0,
"id": generate_random_id("call_"),
"type": "function",
"function": {
"name": tool_call_json["name"],
"arguments": json.dumps(tool_call_json["parameters"])
}
}]
}
chunk_data = {
"id": chat_id, "object": "chat.completion.chunk", "created": created,
"model": model_id,
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
"usage": None
}
yield f"data: {json.dumps(chunk_data)}\n\n"
else:
continue
else:
# Regular content
if is_first_chunk:
delta = {"content": "".join(chunks_buffer), "tool_calls": None}
delta["role"] = "assistant"
is_first_chunk = False
chunk_data = {
"id": chat_id, "object": "chat.completion.chunk", "created": created,
"model": model_id,
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
"usage": None
}
yield f"data: {json.dumps(chunk_data)}\n\n"
delta = {"content": content_piece, "tool_calls": None}
chunk_data = {
"id": chat_id, "object": "chat.completion.chunk", "created": created,
"model": model_id,
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
"usage": None
}
yield f"data: {json.dumps(chunk_data)}\n\n"
except json.JSONDecodeError: continue
elif line.startswith(("e:", "d:")):
try:
usage_info = json.loads(line[2:]).get("usage")
except (json.JSONDecodeError, AttributeError): pass
break
final_usage = None
if usage_info:
prompt_tokens = usage_info.get("promptTokens", 0)
completion_tokens = usage_info.get("completionTokens", 0)
final_usage = {
"prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
done_chunk = {
"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
"choices": [{
"index": 0,
"delta": {"role": "assistant", "content": None, "function_call": None, "tool_calls": None},
"finish_reason": "stop"
}],
"usage": final_usage
}
yield f"data: {json.dumps(done_chunk)}\n\n"
except httpx.HTTPStatusError as e:
error_content = {
"error": {
"message": f"Upstream API error: {e.response.status_code}. Details: {e.response.text}",
"type": "upstream_error", "code": str(e.response.status_code)
}
}
yield f"data: {json.dumps(error_content)}\n\n"
finally:
yield "data: [DONE]\n\n"
return StreamingResponse(event_stream(), media_type="text/event-stream")
else: # Non-streaming
assistant_response, usage_info = "", {}
tool_call_json = None
try:
async with httpx.AsyncClient(timeout=120) as client:
async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat", headers=headers, json=payload) as response:
response.raise_for_status()
async for chunk in response.aiter_lines():
if chunk.startswith("0:"):
try: assistant_response += json.loads(chunk[2:])
except: continue
elif chunk.startswith(("e:", "d:")):
try: usage_info = json.loads(chunk[2:]).get("usage", {})
except: continue
if "<tool_call>" in assistant_response and "</tool_call>" in assistant_response:
tool_call_str = assistant_response.split("<tool_call>")[1].split("</tool_call>")[0]
tool_call = json.loads(tool_call_str.strip())
tool_call_json = [{"id": generate_random_id("call_"),"function": {"name": tool_call["name"], "arguments": json.dumps(tool_call["parameters"])}}]
return JSONResponse(content={
"id": chat_id, "object": "chat.completion", "created": int(time.time()), "model": model_id,
"choices": [{"index": 0, "message": {"role": "assistant", "content": assistant_response if tool_call_json is None else None, "tool_calls": tool_call_json}, "finish_reason": "stop"}],
"usage": {
"prompt_tokens": usage_info.get("promptTokens", 0),
"completion_tokens": usage_info.get("completionTokens", 0),
"total_tokens": usage_info.get("promptTokens", 0) + usage_info.get("completionTokens", 0),
}
})
except httpx.HTTPStatusError as e:
return JSONResponse(status_code=e.response.status_code, content={"error": {"message": f"Upstream API error. Details: {e.response.text}", "type": "upstream_error"}})
# === Image Generation ===
class ImageGenerationRequest(BaseModel):
prompt: str
aspect_ratio: Optional[str] = "1:1"
n: Optional[int] = 1
user: Optional[str] = None
model: Optional[str] = "default"
@app.post("/v1/images/generations")
async def generate_images(request: ImageGenerationRequest):
"""Handles image generation requests."""
results = []
try:
async with httpx.AsyncClient(timeout=120) as client:
for _ in range(request.n):
model = request.model or "default"
if model in ["gpt-image-1", "dall-e-3", "dall-e-2", "nextlm-image-1"]:
headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
payload = {"prompt": request.prompt, "model": model}
resp = await client.post("https://www.chatwithmono.xyz/api/image", headers=headers, json=payload)
resp.raise_for_status()
data = resp.json()
b64_image = data.get("image")
if not b64_image: return JSONResponse(status_code=502, content={"error": "Missing base64 image in response"})
if SNAPZION_API_KEY:
upload_headers = {"Authorization": SNAPZION_API_KEY}
upload_files = {'file': ('image.png', base64.b64decode(b64_image), 'image/png')}
upload_resp = await client.post(SNAPZION_UPLOAD_URL, headers=upload_headers, files=upload_files)
upload_resp.raise_for_status()
upload_data = upload_resp.json()
image_url = upload_data.get("url")
else:
image_url = f"data:image/png;base64,{b64_image}"
results.append({"url": image_url, "b64_json": b64_image, "revised_prompt": data.get("revised_prompt")})
else:
params = {"prompt": request.prompt, "aspect_ratio": request.aspect_ratio, "link": "typegpt.net"}
resp = await client.get(IMAGE_API_URL, params=params)
resp.raise_for_status()
data = resp.json()
results.append({"url": data.get("image_link"), "b64_json": data.get("base64_output")})
except httpx.HTTPStatusError as e:
return JSONResponse(status_code=502, content={"error": f"Image generation failed. Upstream error: {e.response.status_code}", "details": e.response.text})
except Exception as e:
return JSONResponse(status_code=500, content={"error": "An internal error occurred.", "details": str(e)})
return {"created": int(time.time()), "data": results}
# === Moderation Endpoint ===
class ModerationRequest(BaseModel):
input: Union[str, List[str]]
model: Optional[str] = "text-moderation-stable"
@app.post("/v1/moderations")
async def create_moderation(request: ModerationRequest):
"""
Handles moderation requests, conforming to the OpenAI API specification.
Includes a custom 'reason' field in the result if provided by the upstream API.
"""
input_texts = [request.input] if isinstance(request.input, str) else request.input
if not input_texts:
return JSONResponse(status_code=400, content={"error": {"message": "Request must have at least one input string.", "type": "invalid_request_error"}})
moderation_url = "https://www.chatwithmono.xyz/api/moderation"
headers = {
'Content-Type': 'application/json',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36',
'Referer': 'https://www.chatwithmono.xyz/',
}
results = []
try:
async with httpx.AsyncClient(timeout=30) as client:
for text_input in input_texts:
payload = {"text": text_input}
resp = await client.post(moderation_url, headers=headers, json=payload)
resp.raise_for_status()
upstream_data = resp.json()
# --- Transform upstream response to OpenAI format ---
upstream_categories = upstream_data.get("categories", {})
openai_categories = {
"hate": upstream_categories.get("hate", False), "hate/threatening": False,
"harassment": False, "harassment/threatening": False,
"self-harm": upstream_categories.get("self-harm", False), "self-harm/intent": False, "self-harm/instructions": False,
"sexual": upstream_categories.get("sexual", False), "sexual/minors": False,
"violence": upstream_categories.get("violence", False), "violence/graphic": False,
}
category_scores = {k: 1.0 if v else 0.0 for k, v in openai_categories.items()}
flagged = upstream_data.get("overall_sentiment") == "flagged"
result_item = {
"flagged": flagged,
"categories": openai_categories,
"category_scores": category_scores,
}
# --- NEW: Conditionally add the 'reason' field ---
# This is a custom extension to the OpenAI spec to provide more detail.
reason = upstream_data.get("reason")
if reason:
result_item["reason"] = reason
results.append(result_item)
except httpx.HTTPStatusError as e:
return JSONResponse(
status_code=502, # Bad Gateway
content={"error": {"message": f"Moderation failed. Upstream error: {e.response.status_code}", "type": "upstream_error", "details": e.response.text}}
)
except Exception as e:
return JSONResponse(status_code=500, content={"error": {"message": "An internal error occurred during moderation.", "type": "internal_error", "details": str(e)}})
# Build the final OpenAI-compatible response
final_response = {
"id": generate_random_id("modr-"),
"model": request.model,
"results": results,
}
return JSONResponse(content=final_response)
# --- Main Execution ---
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)