Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install tensorflow==2.3.0") | |
os.system("pip install tensorflow_hub") | |
os.system("pip install numpy==1.20.3") | |
import tensorflow as tf | |
# Load compressed models from tensorflow_hub | |
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' | |
import numpy as np | |
import PIL.Image | |
import time | |
import functools | |
def tensor_to_image(tensor): | |
tensor = tensor*255 | |
tensor = np.array(tensor, dtype=np.uint8) | |
if np.ndim(tensor)>3: | |
assert tensor.shape[0] == 1 | |
tensor = tensor[0] | |
return PIL.Image.fromarray(tensor) | |
import tensorflow_hub as hub | |
def load_img(path_to_img): | |
max_dim = 512 | |
img = tf.io.read_file(path_to_img) | |
img = tf.image.decode_image(img, channels=3) | |
img = tf.image.convert_image_dtype(img, tf.float32) | |
shape = tf.cast(tf.shape(img)[:-1], tf.float32) | |
long_dim = max(shape) | |
scale = max_dim / long_dim | |
new_shape = tf.cast(shape * scale, tf.int32) | |
img = tf.image.resize(img, new_shape) | |
img = img[tf.newaxis, :] | |
return img | |
import gradio as gr | |
def inference(content_image, style_image): | |
stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0] | |
img = tensor_to_image(stylized_image) | |
return img | |
title = "TTT" | |
gr.Interface( | |
inference, | |
gr.inputs.Image(type="pil", label="content_image"), | |
gr.inputs.Image(type="pil", label="style_image"), | |
gr.outputs.Image(type="pil", label="Output"), | |
title=title, | |
example=[], | |
description="", | |
enable_queue=True, | |
allow_flagging="auto" | |
).launch() | |