APJ23 commited on
Commit
fac94f4
·
1 Parent(s): 28e7100

upload the app

Browse files
Files changed (1) hide show
  1. app.py +62 -0
app.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """HW3.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1H-R9L74rpYOoQJOnTLLbUpcNpd9Tty_D
8
+ """
9
+
10
+ !wget http://vis-www.cs.umass.edu/lfw/lfw.tgz
11
+ !tar -xvf /content/lfw.tgz
12
+ import tensorflow as tf
13
+ from sklearn.datasets import load_sample_image
14
+ import os
15
+ import tensorflow.keras.applications.resnet50 as resnet50
16
+ from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
17
+ from tensorflow.keras.preprocessing.image import load_img, img_to_array
18
+ import numpy as np
19
+ from PIL import Image
20
+ from sklearn.neighbors import NearestNeighbors
21
+
22
+ directory = '/content/lfw'
23
+ model = resnet50.ResNet50(weights='imagenet', include_top=False, pooling='avg')
24
+ feature_dict = {}
25
+ image_files = []
26
+ target_size = (224, 224)
27
+ i = 0
28
+
29
+ # Sample at most 2000 images because the whole entire dataset
30
+ # costs too much cpu power and ram
31
+
32
+ def preprocess_image(image_path, target_size):
33
+ img = load_img(os.path.join(directory,image_path),target_size=target_size)
34
+ x = img_to_array(img)
35
+ x = tf.expand_dims(x, axis = 0)
36
+ x = preprocess_input(x)
37
+ features = model.predict(x)
38
+ return features
39
+
40
+ for dir in os.listdir(directory):
41
+ i += 1
42
+ new_dir = '/content/lfw/'+dir
43
+ if os.path.isdir(new_dir):
44
+ for files in os.listdir(new_dir):
45
+ feature_dict[new_dir+'/'+files] = preprocess_image(new_dir+'/'+files, target_size).flatten()
46
+ if i >= 100:
47
+ break
48
+
49
+ for file, features in feature_dict.items():
50
+ print(file, features)
51
+
52
+ feature_map = np.array(list(feature_dict.values()))
53
+
54
+ NearNeigh = NearestNeighbors(n_neighbors=10,algorithm='auto').fit(feature_map)
55
+
56
+ for image_path in feature_dict:
57
+ img = feature_dict[image_path].reshape(1,-1)
58
+ distance,indices = NearNeigh.kneighbors(img)
59
+ print('Similar images for', image_path)
60
+ for i, index in enumerate(indices[0]):
61
+ similar_img_path = list(feature_dict.keys())[index]
62
+ print(i+1,similar_img_path)