ATK20's picture
Update app.py
4e281a3 verified
raw
history blame
5.69 kB
import os
import gradio as gr
import requests
import pandas as pd
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
DEFAULT_HF_MODEL = "mistralai/Mistral-7B-Instruct-v0.1" # Free model on Hugging Face
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self, hf_token=None, model_name=DEFAULT_HF_MODEL):
print("Initializing BasicAgent with LLM...")
self.hf_token = hf_token
self.model_name = model_name
self.llm = None
if hf_token:
try:
print(f"Loading model: {model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
self.model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token)
self.llm = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device_map="auto"
)
print("Model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
raise Exception(f"Could not load model: {e}")
else:
print("No HF token provided - agent will use default answers")
def __call__(self, question: str) -> str:
if not self.llm:
return "This is a default answer (no LLM initialized)"
try:
print(f"Generating answer for question: {question[:50]}...")
response = self.llm(
question,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_p=0.9
)
return response[0]['generated_text']
except Exception as e:
print(f"Error generating answer: {e}")
return f"Error generating answer: {e}"
def run_and_submit_all(profile: gr.OAuthProfile | None, hf_token: str):
"""Main function to run evaluation and submit answers"""
space_id = os.getenv("SPACE_ID")
if not profile:
return "Please Login to Hugging Face with the button.", None
username = profile.username
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Initialize agent
try:
agent = BasicAgent(hf_token=hf_token)
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
except Exception as e:
return f"Error fetching questions: {e}", None
# Process questions
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Submit answers
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# LLM Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens)
2. Enter your token below
3. Log in to your Hugging Face account
4. Click 'Run Evaluation & Submit All Answers'
""")
with gr.Row():
hf_token_input = gr.Textbox(
label="Hugging Face API Token",
type="password",
placeholder="hf_xxxxxxxxxxxxxxxx",
info="Required for LLM access"
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status", lines=5)
results_table = gr.DataFrame(label="Results", wrap=True)
run_button.click(
fn=run_and_submit_all,
inputs=[gr.OAuthProfile(), hf_token_input],
outputs=[status_output, results_table]
)
if __name__ == "__main__":
demo.launch()