Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
DEFAULT_HF_MODEL = "mistralai/Mistral-7B-Instruct-v0.1" # Free model on Hugging Face | |
# --- Basic Agent Definition --- | |
class BasicAgent: | |
def __init__(self, hf_token=None, model_name=DEFAULT_HF_MODEL): | |
print("Initializing BasicAgent with LLM...") | |
self.hf_token = hf_token | |
self.model_name = model_name | |
self.llm = None | |
if hf_token: | |
try: | |
print(f"Loading model: {model_name}") | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token) | |
self.model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token) | |
self.llm = pipeline( | |
"text-generation", | |
model=self.model, | |
tokenizer=self.tokenizer, | |
device_map="auto" | |
) | |
print("Model loaded successfully") | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
raise Exception(f"Could not load model: {e}") | |
else: | |
print("No HF token provided - agent will use default answers") | |
def __call__(self, question: str) -> str: | |
if not self.llm: | |
return "This is a default answer (no LLM initialized)" | |
try: | |
print(f"Generating answer for question: {question[:50]}...") | |
response = self.llm( | |
question, | |
max_new_tokens=150, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.9 | |
) | |
return response[0]['generated_text'] | |
except Exception as e: | |
print(f"Error generating answer: {e}") | |
return f"Error generating answer: {e}" | |
def run_and_submit_all(profile: gr.OAuthProfile | None, hf_token: str): | |
"""Main function to run evaluation and submit answers""" | |
space_id = os.getenv("SPACE_ID") | |
if not profile: | |
return "Please Login to Hugging Face with the button.", None | |
username = profile.username | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# Initialize agent | |
try: | |
agent = BasicAgent(hf_token=hf_token) | |
except Exception as e: | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
# Fetch questions | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
return "Fetched questions list is empty or invalid format.", None | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
# Process questions | |
results_log = [] | |
answers_payload = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# Submit answers | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
return final_status, pd.DataFrame(results_log) | |
except Exception as e: | |
return f"Submission Failed: {e}", pd.DataFrame(results_log) | |
# --- Gradio Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# LLM Agent Evaluation Runner") | |
gr.Markdown(""" | |
**Instructions:** | |
1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens) | |
2. Enter your token below | |
3. Log in to your Hugging Face account | |
4. Click 'Run Evaluation & Submit All Answers' | |
""") | |
with gr.Row(): | |
hf_token_input = gr.Textbox( | |
label="Hugging Face API Token", | |
type="password", | |
placeholder="hf_xxxxxxxxxxxxxxxx", | |
info="Required for LLM access" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status", lines=5) | |
results_table = gr.DataFrame(label="Results", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
inputs=[gr.OAuthProfile(), hf_token_input], | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
demo.launch() |