Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -5,8 +5,9 @@ import os
|
|
5 |
import requests
|
6 |
from pypdf import PdfReader
|
7 |
import gradio as gr
|
8 |
-
import chromadb
|
9 |
import numpy as np
|
|
|
|
|
10 |
|
11 |
load_dotenv(override=True)
|
12 |
|
@@ -105,21 +106,34 @@ class Me:
|
|
105 |
self.openai = OpenAI()
|
106 |
self.name = "Alexandre Saadoun"
|
107 |
|
108 |
-
# Initialize
|
109 |
-
self.
|
|
|
110 |
|
111 |
# Initialize RAG system - this will auto-load all files in me/
|
112 |
-
self.
|
113 |
self._populate_initial_data()
|
114 |
|
115 |
-
def
|
116 |
-
"""Setup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
try:
|
118 |
-
self.
|
119 |
-
|
120 |
-
except:
|
121 |
-
|
122 |
-
print("✅ Created new knowledge base")
|
123 |
|
124 |
def _get_embedding(self, text):
|
125 |
"""Get embedding for text using OpenAI"""
|
@@ -130,9 +144,9 @@ class Me:
|
|
130 |
return response.data[0].embedding
|
131 |
|
132 |
def _populate_initial_data(self):
|
133 |
-
"""Store initial knowledge in
|
134 |
# Check if data already exists
|
135 |
-
count = self.
|
136 |
|
137 |
if count == 0: # Only populate if empty
|
138 |
print("Auto-loading all files from me/ directory...")
|
@@ -192,14 +206,20 @@ class Me:
|
|
192 |
|
193 |
# Clear existing me/ content
|
194 |
try:
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
except Exception as e:
|
204 |
print(f"Error clearing existing data: {e}")
|
205 |
|
@@ -210,20 +230,40 @@ class Me:
|
|
210 |
def _search_knowledge(self, query, limit=3):
|
211 |
"""Search for relevant knowledge using vector similarity"""
|
212 |
try:
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
search_results = []
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
})
|
227 |
|
228 |
return search_results
|
229 |
except Exception as e:
|
@@ -231,18 +271,19 @@ class Me:
|
|
231 |
return []
|
232 |
|
233 |
def _store_new_knowledge(self, information, context=""):
|
234 |
-
"""Store new information in
|
235 |
try:
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
246 |
except Exception as e:
|
247 |
print(f"Error storing knowledge: {e}")
|
248 |
|
@@ -268,25 +309,19 @@ class Me:
|
|
268 |
|
269 |
# Store each chunk
|
270 |
try:
|
271 |
-
documents = []
|
272 |
-
metadatas = []
|
273 |
-
ids = []
|
274 |
-
|
275 |
for i, chunk in enumerate(chunks):
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
278 |
"type": "text_content",
|
279 |
"source": source_name,
|
280 |
"chunk_index": i,
|
281 |
"timestamp": str(np.datetime64('now'))
|
282 |
})
|
283 |
-
ids.append(f"{source_name}_chunk_{i}")
|
284 |
|
285 |
-
self.
|
286 |
-
documents=documents,
|
287 |
-
metadatas=metadatas,
|
288 |
-
ids=ids
|
289 |
-
)
|
290 |
except Exception as e:
|
291 |
print(f"Error storing chunks: {e}")
|
292 |
|
@@ -340,22 +375,31 @@ class Me:
|
|
340 |
"""
|
341 |
try:
|
342 |
if knowledge_type:
|
343 |
-
#
|
344 |
-
|
345 |
-
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
-
if
|
349 |
-
|
350 |
-
|
351 |
else:
|
352 |
print(f"No {knowledge_type} documents found")
|
353 |
else:
|
354 |
-
# Clear entire
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
|
|
|
|
359 |
else:
|
360 |
print("No documents to delete")
|
361 |
|
@@ -365,12 +409,10 @@ class Me:
|
|
365 |
def get_knowledge_stats(self):
|
366 |
"""Get statistics about the knowledge base"""
|
367 |
try:
|
368 |
-
results = self.collection.get(include=["metadatas"])
|
369 |
-
|
370 |
stats = {}
|
371 |
-
total = len(
|
372 |
|
373 |
-
for metadata in
|
374 |
doc_type = metadata.get("type", "unknown")
|
375 |
stats[doc_type] = stats.get(doc_type, 0) + 1
|
376 |
|
|
|
5 |
import requests
|
6 |
from pypdf import PdfReader
|
7 |
import gradio as gr
|
|
|
8 |
import numpy as np
|
9 |
+
import pickle
|
10 |
+
import os
|
11 |
|
12 |
load_dotenv(override=True)
|
13 |
|
|
|
106 |
self.openai = OpenAI()
|
107 |
self.name = "Alexandre Saadoun"
|
108 |
|
109 |
+
# Initialize simple vector store
|
110 |
+
self.vector_store_path = "./vector_store.pkl"
|
111 |
+
self.knowledge_base = {"documents": [], "embeddings": [], "metadata": []}
|
112 |
|
113 |
# Initialize RAG system - this will auto-load all files in me/
|
114 |
+
self._setup_vector_store()
|
115 |
self._populate_initial_data()
|
116 |
|
117 |
+
def _setup_vector_store(self):
|
118 |
+
"""Setup simple vector store for RAG"""
|
119 |
+
try:
|
120 |
+
if os.path.exists(self.vector_store_path):
|
121 |
+
with open(self.vector_store_path, 'rb') as f:
|
122 |
+
self.knowledge_base = pickle.load(f)
|
123 |
+
print("✅ Loaded existing knowledge base")
|
124 |
+
else:
|
125 |
+
print("✅ Created new knowledge base")
|
126 |
+
except Exception as e:
|
127 |
+
print(f"Error loading knowledge base: {e}")
|
128 |
+
self.knowledge_base = {"documents": [], "embeddings": [], "metadata": []}
|
129 |
+
|
130 |
+
def _save_vector_store(self):
|
131 |
+
"""Save vector store to disk"""
|
132 |
try:
|
133 |
+
with open(self.vector_store_path, 'wb') as f:
|
134 |
+
pickle.dump(self.knowledge_base, f)
|
135 |
+
except Exception as e:
|
136 |
+
print(f"Error saving knowledge base: {e}")
|
|
|
137 |
|
138 |
def _get_embedding(self, text):
|
139 |
"""Get embedding for text using OpenAI"""
|
|
|
144 |
return response.data[0].embedding
|
145 |
|
146 |
def _populate_initial_data(self):
|
147 |
+
"""Store initial knowledge in vector store"""
|
148 |
# Check if data already exists
|
149 |
+
count = len(self.knowledge_base["documents"])
|
150 |
|
151 |
if count == 0: # Only populate if empty
|
152 |
print("Auto-loading all files from me/ directory...")
|
|
|
206 |
|
207 |
# Clear existing me/ content
|
208 |
try:
|
209 |
+
indices_to_remove = []
|
210 |
+
for i, metadata in enumerate(self.knowledge_base["metadata"]):
|
211 |
+
if metadata.get("source", "").startswith("me_"):
|
212 |
+
indices_to_remove.append(i)
|
213 |
|
214 |
+
# Remove in reverse order to maintain indices
|
215 |
+
for i in reversed(indices_to_remove):
|
216 |
+
del self.knowledge_base["documents"][i]
|
217 |
+
del self.knowledge_base["embeddings"][i]
|
218 |
+
del self.knowledge_base["metadata"][i]
|
219 |
+
|
220 |
+
if indices_to_remove:
|
221 |
+
print(f"Cleared {len(indices_to_remove)} existing files from me/")
|
222 |
+
self._save_vector_store()
|
223 |
except Exception as e:
|
224 |
print(f"Error clearing existing data: {e}")
|
225 |
|
|
|
230 |
def _search_knowledge(self, query, limit=3):
|
231 |
"""Search for relevant knowledge using vector similarity"""
|
232 |
try:
|
233 |
+
if not self.knowledge_base["documents"]:
|
234 |
+
return []
|
235 |
+
|
236 |
+
# Get query embedding
|
237 |
+
query_embedding = self._get_embedding(query)
|
238 |
+
query_vector = np.array(query_embedding)
|
239 |
+
|
240 |
+
# Calculate cosine similarities
|
241 |
+
similarities = []
|
242 |
+
for i, doc_embedding in enumerate(self.knowledge_base["embeddings"]):
|
243 |
+
doc_vector = np.array(doc_embedding)
|
244 |
+
|
245 |
+
# Cosine similarity
|
246 |
+
dot_product = np.dot(query_vector, doc_vector)
|
247 |
+
norm_query = np.linalg.norm(query_vector)
|
248 |
+
norm_doc = np.linalg.norm(doc_vector)
|
249 |
+
|
250 |
+
if norm_query > 0 and norm_doc > 0:
|
251 |
+
similarity = dot_product / (norm_query * norm_doc)
|
252 |
+
else:
|
253 |
+
similarity = 0.0
|
254 |
+
|
255 |
+
similarities.append((similarity, i))
|
256 |
+
|
257 |
+
# Sort by similarity and get top results
|
258 |
+
similarities.sort(reverse=True)
|
259 |
|
260 |
search_results = []
|
261 |
+
for similarity, idx in similarities[:limit]:
|
262 |
+
search_results.append({
|
263 |
+
"content": self.knowledge_base["documents"][idx],
|
264 |
+
"type": self.knowledge_base["metadata"][idx].get("type", "unknown"),
|
265 |
+
"score": similarity
|
266 |
+
})
|
|
|
267 |
|
268 |
return search_results
|
269 |
except Exception as e:
|
|
|
271 |
return []
|
272 |
|
273 |
def _store_new_knowledge(self, information, context=""):
|
274 |
+
"""Store new information in vector store"""
|
275 |
try:
|
276 |
+
embedding = self._get_embedding(information)
|
277 |
+
|
278 |
+
self.knowledge_base["documents"].append(information)
|
279 |
+
self.knowledge_base["embeddings"].append(embedding)
|
280 |
+
self.knowledge_base["metadata"].append({
|
281 |
+
"type": "conversation",
|
282 |
+
"context": context,
|
283 |
+
"timestamp": str(np.datetime64('now'))
|
284 |
+
})
|
285 |
+
|
286 |
+
self._save_vector_store()
|
287 |
except Exception as e:
|
288 |
print(f"Error storing knowledge: {e}")
|
289 |
|
|
|
309 |
|
310 |
# Store each chunk
|
311 |
try:
|
|
|
|
|
|
|
|
|
312 |
for i, chunk in enumerate(chunks):
|
313 |
+
embedding = self._get_embedding(chunk)
|
314 |
+
|
315 |
+
self.knowledge_base["documents"].append(chunk)
|
316 |
+
self.knowledge_base["embeddings"].append(embedding)
|
317 |
+
self.knowledge_base["metadata"].append({
|
318 |
"type": "text_content",
|
319 |
"source": source_name,
|
320 |
"chunk_index": i,
|
321 |
"timestamp": str(np.datetime64('now'))
|
322 |
})
|
|
|
323 |
|
324 |
+
self._save_vector_store()
|
|
|
|
|
|
|
|
|
325 |
except Exception as e:
|
326 |
print(f"Error storing chunks: {e}")
|
327 |
|
|
|
375 |
"""
|
376 |
try:
|
377 |
if knowledge_type:
|
378 |
+
# Remove documents of specific type
|
379 |
+
indices_to_remove = []
|
380 |
+
for i, metadata in enumerate(self.knowledge_base["metadata"]):
|
381 |
+
if metadata.get("type") == knowledge_type:
|
382 |
+
indices_to_remove.append(i)
|
383 |
+
|
384 |
+
# Remove in reverse order to maintain indices
|
385 |
+
for i in reversed(indices_to_remove):
|
386 |
+
del self.knowledge_base["documents"][i]
|
387 |
+
del self.knowledge_base["embeddings"][i]
|
388 |
+
del self.knowledge_base["metadata"][i]
|
389 |
|
390 |
+
if indices_to_remove:
|
391 |
+
print(f"Deleted {len(indices_to_remove)} {knowledge_type} documents")
|
392 |
+
self._save_vector_store()
|
393 |
else:
|
394 |
print(f"No {knowledge_type} documents found")
|
395 |
else:
|
396 |
+
# Clear entire knowledge base
|
397 |
+
count = len(self.knowledge_base["documents"])
|
398 |
+
self.knowledge_base = {"documents": [], "embeddings": [], "metadata": []}
|
399 |
+
|
400 |
+
if count > 0:
|
401 |
+
print(f"Deleted {count} documents")
|
402 |
+
self._save_vector_store()
|
403 |
else:
|
404 |
print("No documents to delete")
|
405 |
|
|
|
409 |
def get_knowledge_stats(self):
|
410 |
"""Get statistics about the knowledge base"""
|
411 |
try:
|
|
|
|
|
412 |
stats = {}
|
413 |
+
total = len(self.knowledge_base["documents"])
|
414 |
|
415 |
+
for metadata in self.knowledge_base["metadata"]:
|
416 |
doc_type = metadata.get("type", "unknown")
|
417 |
stats[doc_type] = stats.get(doc_type, 0) + 1
|
418 |
|