File size: 82,063 Bytes
c2552dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
import os
import re
import json
import time
import random
import tempfile
import requests
import numpy as np
import uuid
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
from datetime import datetime
import gradio as gr
from dotenv import load_dotenv
import moviepy.editor as mpy
from moviepy.editor import *
from moviepy.audio.fx.all import volumex
from moviepy.video.fx.all import crop

# Suppress the asyncio "Event loop is closed" warning on Windows
import sys
if sys.platform.startswith('win'):
    import asyncio
    asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())

# Load environment variables from .env file if present
load_dotenv()

# Directory structure constants
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
STATIC_DIR = os.path.join(BASE_DIR, "static")
MUSIC_DIR = os.path.join(STATIC_DIR, "music")
FONTS_DIR = os.path.join(STATIC_DIR, "fonts")
STORAGE_DIR = os.path.join(BASE_DIR, "storage")

# Create necessary directories
os.makedirs(STATIC_DIR, exist_ok=True)
os.makedirs(MUSIC_DIR, exist_ok=True)
os.makedirs(FONTS_DIR, exist_ok=True)
os.makedirs(STORAGE_DIR, exist_ok=True)

# Helper functions for logging
def info(message):
    timestamp = datetime.now().strftime("%H:%M:%S")
    formatted_message = f"[{timestamp}] [INFO] {message}"
    print(formatted_message)
    return formatted_message

def success(message):
    timestamp = datetime.now().strftime("%H:%M:%S")
    formatted_message = f"[{timestamp}] [SUCCESS] {message}"
    print(formatted_message)
    return formatted_message

def warning(message):
    timestamp = datetime.now().strftime("%H:%M:%S")
    formatted_message = f"[{timestamp}] [WARNING] {message}"
    print(formatted_message)
    return formatted_message

def error(message):
    timestamp = datetime.now().strftime("%H:%M:%S")
    formatted_message = f"[{timestamp}] [ERROR] {message}"
    print(formatted_message)
    return formatted_message

def get_music_files():
    """Get list of available music files in the music directory."""
    if not os.path.exists(MUSIC_DIR):
        return ["none"]
    
    music_files = [f for f in os.listdir(MUSIC_DIR) if f.endswith(('.mp3', '.wav'))]
    if not music_files:
        return ["none"]
    
    return ["random"] + music_files

def get_font_files():
    """Get list of available font files in the fonts directory."""
    if not os.path.exists(FONTS_DIR):
        return ["default"]
    
    font_files = [f.split('.')[0] for f in os.listdir(FONTS_DIR) if f.endswith(('.ttf', '.otf'))]
    if not font_files:
        return ["default"]
    
    return ["random"] + font_files

def choose_random_music():
    """Selects a random music file from the music directory."""
    if not os.path.exists(MUSIC_DIR):
        error(f"Music directory {MUSIC_DIR} does not exist")
        return None
    
    music_files = [f for f in os.listdir(MUSIC_DIR) if f.endswith(('.mp3', '.wav'))]
    if not music_files:
        warning(f"No music files found in {MUSIC_DIR}")
        return None
    
    return os.path.join(MUSIC_DIR, random.choice(music_files))

def choose_random_font():
    """Selects a random font file from the fonts directory."""
    if not os.path.exists(FONTS_DIR):
        error(f"Fonts directory {FONTS_DIR} does not exist")
        return "default"
    
    font_files = [f for f in os.listdir(FONTS_DIR) if f.endswith(('.ttf', '.otf'))]
    if not font_files:
        warning(f"No font files found in {FONTS_DIR}")
        return None
    
    return font_files[0].split('.')[0] if len(font_files) == 1 else random.choice([f.split('.')[0] for f in font_files])

class YouTube:
    def __init__(self, niche: str, language: str, 
                 text_gen="g4f", text_model="gpt-4", 
                 image_gen="g4f", image_model="flux", 
                 tts_engine="edge", tts_voice="en-US-AriaNeural", 
                 subtitle_font="default", font_size=80, 
                 text_color="white", highlight_color="blue",
                 subtitles_enabled=True, highlighting_enabled=True,
                 subtitle_position="bottom", music_file="random",
                 enable_music=True, music_volume=0.1,
                 api_keys=None, progress=gr.Progress()) -> None:
        
        """Initialize the YouTube Shorts Generator."""
        self.progress = progress
        self.progress(0, desc="Initializing")
        
        # Store basic parameters
        info(f"Initializing YouTube class")
        self._niche = niche
        self._language = language
        self.text_gen = text_gen
        self.text_model = text_model
        self.image_gen = image_gen
        self.image_model = image_model
        self.tts_engine = tts_engine
        self.tts_voice = tts_voice
        self.subtitle_font = subtitle_font
        self.font_size = font_size
        self.text_color = text_color
        self.highlight_color = highlight_color
        self.subtitles_enabled = subtitles_enabled
        self.highlighting_enabled = highlighting_enabled
        self.subtitle_position = subtitle_position
        self.music_file = music_file
        self.enable_music = enable_music
        self.music_volume = music_volume
        self.api_keys = api_keys or {}
        self.images = []
        self.logs = []
        
        # Set API keys from parameters or environment variables
        if 'gemini' in self.api_keys and self.api_keys['gemini']:
            os.environ["GEMINI_API_KEY"] = self.api_keys['gemini']
        
        if 'assemblyai' in self.api_keys and self.api_keys['assemblyai']:
            os.environ["ASSEMBLYAI_API_KEY"] = self.api_keys['assemblyai']
        
        if 'elevenlabs' in self.api_keys and self.api_keys['elevenlabs']:
            os.environ["ELEVENLABS_API_KEY"] = self.api_keys['elevenlabs']
        
        if 'segmind' in self.api_keys and self.api_keys['segmind']:
            os.environ["SEGMIND_API_KEY"] = self.api_keys['segmind']
        
        if 'openai' in self.api_keys and self.api_keys['openai']:
            os.environ["OPENAI_API_KEY"] = self.api_keys['openai']
            
        info(f"Niche: {niche}, Language: {language}")
        self.log(f"Initialized with niche: {niche}, language: {language}")
        self.log(f"Text generator: {text_gen} - Model: {text_model}")
        self.log(f"Image generator: {image_gen} - Model: {image_model}")
        self.log(f"TTS engine: {tts_engine} - Voice: {tts_voice}")
        self.log(f"Subtitles: {'Enabled' if subtitles_enabled else 'Disabled'} - Highlighting: {'Enabled' if highlighting_enabled else 'Disabled'}")
        self.log(f"Music: {music_file}")
    
    def log(self, message):
        """Add a log message to the logs list."""
        timestamp = datetime.now().strftime("%H:%M:%S")
        log_entry = f"[{timestamp}] {message}"
        self.logs.append(log_entry)
        return log_entry
    
    @property
    def niche(self) -> str:
        return self._niche
    
    @property
    def language(self) -> str:
        return self._language
    
    def generate_response(self, prompt: str, model: str = None) -> str:
        """Generate a response using the selected text generation model."""
        self.log(f"Generating response for prompt: {prompt[:50]}...")
        
        try:
            if self.text_gen == "gemini":
                self.log("Using Google's Gemini model")
                
                # Check if API key is set
                gemini_api_key = os.environ.get("GEMINI_API_KEY", "")
                if not gemini_api_key:
                    raise ValueError("Gemini API key is not set. Please provide a valid API key.")
                
                import google.generativeai as genai
                genai.configure(api_key=gemini_api_key)
                model_to_use = model if model else self.text_model
                genai_model = genai.GenerativeModel(model_to_use)
                response = genai_model.generate_content(prompt).text
                
            elif self.text_gen == "g4f":
                self.log("Using G4F for text generation")
                import g4f
                model_to_use = model if model else self.text_model
                self.log(f"Using G4F model: {model_to_use}")
                response = g4f.ChatCompletion.create(
                    model=model_to_use,
                    messages=[{"role": "user", "content": prompt}]
                )
                
            elif self.text_gen == "openai":
                self.log("Using OpenAI for text generation")
                openai_api_key = os.environ.get("OPENAI_API_KEY", "")
                if not openai_api_key:
                    raise ValueError("OpenAI API key is not set. Please provide a valid API key.")
                
                from openai import OpenAI
                client = OpenAI(api_key=openai_api_key)
                model_to_use = model if model else "gpt-3.5-turbo"
                
                response = client.chat.completions.create(
                    model=model_to_use,
                    messages=[{"role": "user", "content": prompt}]
                ).choices[0].message.content
                
            else:
                # No fallback, raise an exception for unsupported text generator
                error_msg = f"Unsupported text generator: {self.text_gen}"
                self.log(error(error_msg))
                raise ValueError(error_msg)
                
            self.log(f"Response generated successfully, length: {len(response)} characters")
            return response
            
        except Exception as e:
            error_msg = f"Error generating response: {str(e)}"
            self.log(error(error_msg))
            raise Exception(error_msg)

    def generate_topic(self) -> str:
        """Generate a topic based on the YouTube Channel niche."""
        self.progress(0.05, desc="Generating topic")
        self.log("Generating topic based on niche")
        
        completion = self.generate_response(
            f"Please generate a specific video idea that takes about the following topic: {self.niche}. "
            f"Make it exactly one sentence. Only return the topic, nothing else."
        )

        if not completion:
            self.log(error("Failed to generate Topic."))
            raise Exception("Failed to generate a topic. Please try again with a different niche.")

        self.subject = completion
        self.log(success(f"Generated topic: {completion}"))
        return completion

    def generate_script(self) -> str:
        """Generate a script for a video, based on the subject and language."""
        self.progress(0.1, desc="Creating script")
        self.log("Generating script for video")
        
        prompt = f"""
        Generate a script for youtube shorts video, depending on the subject of the video.

        The script is to be returned as a string with the specified number of paragraphs.

        Here is an example of a string:
        "This is an example string."

        Do not under any circumstance reference this prompt in your response.

        Get straight to the point, don't start with unnecessary things like, "welcome to this video".

        Obviously, the script should be related to the subject of the video.
        
        YOU MUST NOT INCLUDE ANY TYPE OF MARKDOWN OR FORMATTING IN THE SCRIPT, NEVER USE A TITLE.
        YOU MUST WRITE THE SCRIPT IN THE LANGUAGE SPECIFIED IN [LANGUAGE].
        ONLY RETURN THE RAW CONTENT OF THE SCRIPT. DO NOT INCLUDE "VOICEOVER", "NARRATOR" OR SIMILAR INDICATORS.
        
        Subject: {self.subject}
        Language: {self.language}
        """
        completion = self.generate_response(prompt)

        # Apply regex to remove *
        completion = re.sub(r"\*", "", completion)
        
        if not completion:
            self.log(error("The generated script is empty."))
            raise Exception("Failed to generate a script. Please try again.")
        
        if len(completion) > 5000:
            self.log(warning("Generated script is too long."))
            raise ValueError("Generated script exceeds 5000 characters. Please try again.")
        
        self.script = completion
        self.log(success(f"Generated script ({len(completion)} chars)"))
        return completion

    def generate_metadata(self) -> dict:
        """Generate video metadata (title, description)."""
        self.progress(0.15, desc="Creating title and description")
        self.log("Generating metadata (title and description)")
        
        title = self.generate_response(
            f"Please generate a YouTube Video Title for the following subject, including hashtags: "
            f"{self.subject}. Only return the title, nothing else. Limit the title under 100 characters."
        )

        if len(title) > 100:
            self.log(warning("Generated title exceeds 100 characters."))
            raise ValueError("Generated title exceeds 100 characters. Please try again.")

        description = self.generate_response(
            f"Please generate a YouTube Video Description for the following script: {self.script}. "
            f"Only return the description, nothing else."
        )
        
        self.metadata = {
            "title": title,
            "description": description
        }
        
        self.log(success(f"Generated title: {title}"))
        self.log(success(f"Generated description: {description[:50]}..."))
        return self.metadata
    
    def generate_prompts(self, count=5) -> list:
        """Generate AI Image Prompts based on the provided Video Script."""
        self.progress(0.2, desc="Creating image prompts")
        self.log(f"Generating {count} image prompts")
        
        prompt = f"""
        Generate {count} Image Prompts for AI Image Generation,
        depending on the subject of a video.
        Subject: {self.subject}

        The image prompts are to be returned as
        a JSON-Array of strings.

        Each search term should consist of a full sentence,
        always add the main subject of the video.

        Be emotional and use interesting adjectives to make the
        Image Prompt as detailed as possible.
        
        YOU MUST ONLY RETURN THE JSON-ARRAY OF STRINGS.
        YOU MUST NOT RETURN ANYTHING ELSE. 
        YOU MUST NOT RETURN THE SCRIPT.
        
        The search terms must be related to the subject of the video.
        Here is an example of a JSON-Array of strings:
        ["image prompt 1", "image prompt 2", "image prompt 3"]

        For context, here is the full text:
        {self.script}
        """

        completion = str(self.generate_response(prompt))\
            .replace("```json", "") \
            .replace("```", "")

        image_prompts = []

        if "image_prompts" in completion:
            try:
                image_prompts = json.loads(completion)["image_prompts"]
            except:
                self.log(warning("Failed to parse 'image_prompts' from JSON response."))
                
        if not image_prompts:
            try:
                image_prompts = json.loads(completion)
                self.log(f"Parsed image prompts from JSON response.")
            except Exception:
                self.log(warning("JSON parsing failed. Attempting to extract array using regex..."))

                # Get everything between [ and ], and turn it into a list
                r = re.compile(r"\[.*\]", re.DOTALL)
                matches = r.findall(completion)
                if len(matches) == 0:
                    self.log(warning("Failed to extract array. Unable to create image prompts."))
                    raise ValueError("Failed to generate valid image prompts. Please try again.")
                else:
                    try:
                        image_prompts = json.loads(matches[0])
                    except:
                        self.log(error("Failed to parse array from regex match."))
                        # Use regex to extract individual strings
                        string_pattern = r'"([^"]*)"'
                        strings = re.findall(string_pattern, matches[0])
                        if strings:
                            image_prompts = strings
                        else:
                            self.log(error("Failed to extract strings from regex match."))
                            raise ValueError("Failed to parse image prompts. Please try again.")

        # Ensure we have the requested number of prompts
        if len(image_prompts) < count:
            self.log(warning(f"Received fewer prompts ({len(image_prompts)}) than requested ({count})."))
            raise ValueError(f"Received only {len(image_prompts)} prompts instead of {count}. Please try again.")
            
        # Limit to the requested count
        image_prompts = image_prompts[:count]
        
        self.image_prompts = image_prompts
        self.log(success(f"Generated {len(self.image_prompts)} Image Prompts"))
        for i, prompt in enumerate(self.image_prompts):
            self.log(f"Image Prompt {i+1}: {prompt}")
            
        return image_prompts

    def generate_image(self, prompt) -> str:
        """Generate an image using the selected image generation model."""
        self.log(f"Generating image for prompt: {prompt[:50]}...")
        
        # Always save images directly to the generation folder when it exists
        if hasattr(self, 'generation_folder') and os.path.exists(self.generation_folder):
            image_path = os.path.join(self.generation_folder, f"img_{uuid.uuid4()}_{int(time.time())}.png")
        else:
            # Use STORAGE_DIR if no generation folder
            image_path = os.path.join(STORAGE_DIR, f"img_{uuid.uuid4()}_{int(time.time())}.png")
        
        if self.image_gen == "prodia":
            self.log("Using Prodia provider for image generation")
            s = requests.Session()
            headers = {
                "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
            }
            
            # Generate job
            self.log("Sending generation request to Prodia API")
            resp = s.get(
                "https://api.prodia.com/generate",
                params={
                    "new": "true",
                    "prompt": prompt,
                    "model": self.image_model,
                    "negative_prompt": "verybadimagenegative_v1.3",
                    "steps": "20",
                    "cfg": "7",
                    "seed": random.randint(1, 10000),
                    "sample": "DPM++ 2M Karras",
                    "aspect_ratio": "square"
                },
                headers=headers
            )
            
            if resp.status_code != 200:
                raise Exception(f"Prodia API error: {resp.text}")
            
            job_id = resp.json()['job']
            self.log(f"Job created with ID: {job_id}")
            
            # Wait for generation to complete
            max_attempts = 30
            attempts = 0
            while attempts < max_attempts:
                attempts += 1
                time.sleep(2)
                status = s.get(f"https://api.prodia.com/job/{job_id}", headers=headers).json()
                
                if status["status"] == "succeeded":
                    self.log("Image generation successful, downloading result")
                    img_data = s.get(f"https://images.prodia.xyz/{job_id}.png?download=1", headers=headers).content
                    with open(image_path, "wb") as f:
                        f.write(img_data)
                    self.images.append(image_path)
                    self.log(success(f"Image saved to: {image_path}"))
                    return image_path
                
                elif status["status"] == "failed":
                    raise Exception(f"Prodia job failed: {status.get('error', 'Unknown error')}")
                
                # Still processing
                self.log(f"Still processing, attempt {attempts}/{max_attempts}...")
            
            raise Exception("Prodia job timed out")
        
        elif self.image_gen == "hercai":
            self.log("Using Hercai provider for image generation")
            url = f"https://hercai.onrender.com/{self.image_model}/text2image?prompt={prompt}"
            r = requests.get(url)
            
            if r.status_code != 200:
                raise Exception(f"Hercai API error: {r.text}")
            
            parsed = r.json()
            if "url" in parsed and parsed["url"]:
                self.log("Image URL received from Hercai")
                image_url = parsed["url"]
                img_data = requests.get(image_url).content
                with open(image_path, "wb") as f:
                    f.write(img_data)
                self.images.append(image_path)
                self.log(success(f"Image saved to: {image_path}"))
                return image_path
            else:
                raise Exception("No image URL in Hercai response")
        
        elif self.image_gen == "g4f":
            self.log("Using G4F provider for image generation")
            from g4f.client import Client
            client = Client()
            response = client.images.generate(
                model=self.image_model,
                prompt=prompt,
                response_format="url"
            )
            
            if response and response.data and len(response.data) > 0:
                image_url = response.data[0].url
                image_response = requests.get(image_url)
                
                if image_response.status_code == 200:
                    with open(image_path, "wb") as f:
                        f.write(image_response.content)
                    self.images.append(image_path)
                    self.log(success(f"Image saved to: {image_path}"))
                    return image_path
                else:
                    raise Exception(f"Failed to download image from {image_url}")
            else:
                raise Exception("No image URL received from G4F")
        
        elif self.image_gen == "segmind":
            self.log("Using Segmind provider for image generation")
            api_key = os.environ.get("SEGMIND_API_KEY", "")
            if not api_key:
                raise ValueError("Segmind API key is not set. Please provide a valid API key.")
            
            headers = {
                "x-api-key": api_key,
                "Content-Type": "application/json"
            }
            
            response = requests.post(
                "https://api.segmind.com/v1/sdxl-turbo",
                json={
                    "prompt": prompt,
                    "negative_prompt": "blurry, low quality, distorted face, text, watermark",
                    "samples": 1,
                    "size": "1024x1024",
                    "guidance_scale": 1.0
                },
                headers=headers
            )
            
            if response.status_code == 200:
                with open(image_path, "wb") as f:
                    f.write(response.content)
                self.images.append(image_path)
                self.log(success(f"Image saved to: {image_path}"))
                return image_path
            else:
                raise Exception(f"Segmind request failed: {response.status_code} {response.text}")
        
        elif self.image_gen == "pollinations":
            self.log("Using Pollinations provider for image generation")
            response = requests.get(f"https://image.pollinations.ai/prompt/{prompt}{random.randint(1,10000)}")
            
            if response.status_code == 200:
                self.log("Image received from Pollinations")
                with open(image_path, "wb") as f:
                    f.write(response.content)
                self.images.append(image_path)
                self.log(success(f"Image saved to: {image_path}"))
                return image_path
            else:
                raise Exception(f"Pollinations request failed with status code: {response.status_code}")
        
        else:
            # No fallback, raise an exception for unsupported image generator
            error_msg = f"Unsupported image generator: {self.image_gen}"
            self.log(error(error_msg))
            raise ValueError(error_msg)

    def generate_speech(self, text, output_format='mp3') -> str:
        """Generate speech from text using the selected TTS engine."""
        self.progress(0.6, desc="Creating voiceover")
        self.log("Generating speech from text")
        
        # Clean text
        text = re.sub(r'[^\w\s.?!,;:\'"-]', '', text)
        
        self.log(f"Using TTS Engine: {self.tts_engine}, Voice: {self.tts_voice}")
        
        # Always save to the generation folder when available
        if hasattr(self, 'generation_folder') and os.path.exists(self.generation_folder):
            audio_path = os.path.join(self.generation_folder, f"speech_{uuid.uuid4()}_{int(time.time())}.{output_format}")
        else:
            # Use STORAGE_DIR if no generation folder
            audio_path = os.path.join(STORAGE_DIR, f"speech_{uuid.uuid4()}_{int(time.time())}.{output_format}")
        
        if self.tts_engine == "elevenlabs":
            self.log("Using ElevenLabs provider for speech generation")
            elevenlabs_api_key = os.environ.get("ELEVENLABS_API_KEY", "")
            if not elevenlabs_api_key:
                raise ValueError("ElevenLabs API key is not set. Please provide a valid API key.")
            
            headers = {
                "Accept": "audio/mpeg",
                "Content-Type": "application/json",
                "xi-api-key": elevenlabs_api_key
            }
            
            payload = {
                "text": text,
                "model_id": "eleven_turbo_v2",  # Using latest and most capable model
                "voice_settings": {
                    "stability": 0.5,
                    "similarity_boost": 0.5,
                    "style": 0.0,
                    "use_speaker_boost": True
                },
                "output_format": "mp3_44100_128",  # Higher quality audio (44.1kHz, 128kbps)
                "optimize_streaming_latency": 0    # Optimize for quality over latency
            }
            
            # Map voice names to ElevenLabs voice IDs
            voice_id_mapping = {
                "Sarah": "21m00Tcm4TlvDq8ikWAM",
                "Brian": "hxppwzoRmvxK7YkDrjhQ",
                "Lily": "p7TAj7L6QVq1fE6XGyjR",
                "Monika Sogam": "Fc3XhIu9tfgOPOsU1hMr", 
                "George": "o7lPjDgzlF8ZAeSpqmaN",
                "River": "f0k5evLkhJxrIRJXQJvy",
                "Matilda": "XrExE9yKIg1WjnnlVkGX",
                "Will": "pvKWM1B1sNRNTlEYYAEZ",
                "Jessica": "A5EAMYWMCSsLNL1wYxOv",
                "default": "21m00Tcm4TlvDq8ikWAM"  # Default to Sarah
            }
            
            # Get the voice ID from mapping or use the voice name as ID if not found
            voice_id = voice_id_mapping.get(self.tts_voice, self.tts_voice)
            
            self.log(f"Using ElevenLabs voice: {self.tts_voice} (ID: {voice_id})")
            
            response = requests.post(
                url=f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}",
                json=payload,
                headers=headers
            )
            
            if response.status_code == 200:
                with open(audio_path, 'wb') as f:
                    f.write(response.content)
                self.log(success(f"Speech generated successfully using ElevenLabs at {audio_path}"))
            else:
                try:
                    error_data = response.json()
                    error_message = error_data.get('detail', {}).get('message', response.text)
                    error_status = error_data.get('status', 'error')
                    raise Exception(f"ElevenLabs API error ({response.status_code}, {error_status}): {error_message}")
                except ValueError:
                    # If JSON parsing fails, use the raw response
                    raise Exception(f"ElevenLabs API error ({response.status_code}): {response.text}")
            
        elif self.tts_engine == "gtts":
            self.log("Using Google TTS provider for speech generation")
            from gtts import gTTS
            tts = gTTS(text=text, lang=self.language[:2].lower(), slow=False)
            tts.save(audio_path)
            
        elif self.tts_engine == "openai":
            self.log("Using OpenAI provider for speech generation")
            openai_api_key = os.environ.get("OPENAI_API_KEY", "")
            if not openai_api_key:
                raise ValueError("OpenAI API key is not set. Please provide a valid API key.")
            
            from openai import OpenAI
            client = OpenAI(api_key=openai_api_key)
            
            voice = self.tts_voice if self.tts_voice else "alloy"
            response = client.audio.speech.create(
                model="tts-1",
                voice=voice,
                input=text
            )
            response.stream_to_file(audio_path)
            
        elif self.tts_engine == "edge":
            self.log("Using Edge TTS provider for speech generation")
            import edge_tts
            import asyncio
            
            voice = self.tts_voice if self.tts_voice else "en-US-AriaNeural"
            
            async def generate():
                communicate = edge_tts.Communicate(text, voice)
                await communicate.save(audio_path)
            
            asyncio.run(generate())
        
        else:
            # No fallback, raise an exception for unsupported TTS engine
            error_msg = f"Unsupported TTS engine: {self.tts_engine}"
            self.log(error(error_msg))
            raise ValueError(error_msg)
        
        self.log(success(f"Speech generated and saved to: {audio_path}"))
        self.tts_path = audio_path
        return audio_path

    def generate_subtitles(self, audio_path: str) -> dict:
        """Generate subtitles from audio using AssemblyAI."""
        # If subtitles are disabled, return empty data with settings
        if not self.subtitles_enabled:
            self.log("Subtitles are disabled, skipping generation")
            return {
                "wordlevel": [],
                "linelevel": [],
                "settings": {
                    "font": self.subtitle_font,
                    "fontsize": self.font_size,
                    "color": self.text_color,
                    "bg_color": self.highlight_color if self.highlighting_enabled else None,
                    "position": self.subtitle_position,
                    "highlighting_enabled": self.highlighting_enabled,
                    "subtitles_enabled": self.subtitles_enabled
                }
            }
        
        self.log("Generating subtitles from audio")
        try:
            import assemblyai as aai
            
            # Check if API key is set
            aai_api_key = os.environ.get("ASSEMBLYAI_API_KEY", "")
            if not aai_api_key:
                raise ValueError("AssemblyAI API key is not set. Please provide a valid API key.")
            
            aai.settings.api_key = aai_api_key
            
            config = aai.TranscriptionConfig(speaker_labels=False, word_boost=[], format_text=True)
            transcriber = aai.Transcriber(config=config)
            
            self.log("Submitting audio for transcription")
            transcript = transcriber.transcribe(audio_path)
            
            if not transcript or not transcript.words:
                raise ValueError("Transcription returned no words.")
                
            # Process word-level information
            wordlevel_info = []
            for word in transcript.words:
                word_data = {
                    "word": word.text.strip(),
                    "start": word.start / 1000.0,  # Convert from ms to seconds
                    "end": word.end / 1000.0       # Convert from ms to seconds
                }
                wordlevel_info.append(word_data)
            
            self.log(success(f"Transcription successful. Got {len(wordlevel_info)} words."))
            
            # Define constants for subtitle generation
            # Handle random font selection if configured
            if self.subtitle_font == "random":
                FONT = choose_random_font()
                self.log(f"Using random font: {FONT}")
            else:
                FONT = self.subtitle_font
            
            FONTSIZE = self.font_size
            COLOR = self.text_color
            BG_COLOR = self.highlight_color if self.highlighting_enabled else None
            FRAME_SIZE = (1080, 1920)  # Vertical video format
            
            # Constants for line splitting
            MAX_CHARS = 30  # Maximum characters per line for vertical video format
            MAX_DURATION = 3.0  # Maximum duration for a single line
            MAX_GAP = 1.5  # Split if nothing is spoken for this many seconds
            
            # Split text into lines
            subtitles = []
            line = []
            line_duration = 0

            for idx, word_data in enumerate(wordlevel_info):
                word = word_data["word"]
                start = word_data["start"]
                end = word_data["end"]
                
                line.append(word_data)
                line_duration += end - start
                
                temp = " ".join(item["word"] for item in line)
                new_line_chars = len(temp)
                
                duration_exceeded = line_duration > MAX_DURATION
                chars_exceeded = new_line_chars > MAX_CHARS
                
                if idx > 0:
                    gap = word_data['start'] - wordlevel_info[idx-1]['end'] 
                    maxgap_exceeded = gap > MAX_GAP
                else:
                    maxgap_exceeded = False

                if duration_exceeded or chars_exceeded or maxgap_exceeded:
                    if line:
                        subtitle_line = {
                            "text": " ".join(item["word"] for item in line),
                            "start": line[0]["start"],
                            "end": line[-1]["end"],
                            "words": line
                        }
                        subtitles.append(subtitle_line)
                        line = []
                        line_duration = 0

            # Add remaining words as last line
            if line:
                subtitle_line = {
                    "text": " ".join(item["word"] for item in line),
                    "start": line[0]["start"],
                    "end": line[-1]["end"],
                    "words": line
                }
                subtitles.append(subtitle_line)
            
            self.log(success(f"Generated {len(subtitles)} subtitle lines"))
            
            # Return the subtitle data and settings
            return {
                "wordlevel": wordlevel_info,
                "linelevel": subtitles,
                "settings": {
                    "font": FONT,
                    "fontsize": FONTSIZE,
                    "color": COLOR,
                    "bg_color": BG_COLOR,
                    "position": self.subtitle_position,
                    "highlighting_enabled": self.highlighting_enabled,
                    "subtitles_enabled": self.subtitles_enabled
                }
            }
            
        except Exception as e:
            error_msg = f"Error generating subtitles: {str(e)}"
            self.log(error(error_msg))
            raise Exception(error_msg)

    def create_subtitle_clip(self, subtitle_data, frame_size):
        """Create subtitle clips for a line of text with word-level highlighting."""
        # Early return if subtitles are disabled
        if not subtitle_data.get("settings", {}).get("subtitles_enabled", True):
            self.log("Subtitles are disabled, skipping subtitle clip creation")
            return []
            
        settings = subtitle_data["settings"]
        font_name = settings["font"]
        fontsize = settings["fontsize"]
        color = settings["color"]
        bg_color = settings["bg_color"]
        highlighting_enabled = settings["highlighting_enabled"]
        
        # Pre-load font and calculate color values once
        try:
            font_path = os.path.join(FONTS_DIR, f"{font_name}.ttf")
            if os.path.exists(font_path):
                pil_font = ImageFont.truetype(font_path, fontsize)
            else:
                self.log(warning(f"Font {font_name} not found, using default"))
                pil_font = ImageFont.load_default()
        except Exception as e:
            self.log(warning(f"Error loading font: {str(e)}"))
            pil_font = ImageFont.load_default()
            
        # Parse colors once
        if color.startswith('#'):
            text_color_rgb = tuple(int(color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
        else:
            text_color_rgb = (255, 255, 255)  # Default white
            
        if bg_color and bg_color.startswith('#'):
            bg_color_rgb = tuple(int(bg_color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
        else:
            bg_color_rgb = (0, 0, 255)  # Default blue
        
        # Optimize text clip creation - cache clips for reuse
        clip_cache = {}
        
        def create_text_clip(text, bg_color=None, cache_key=None):
            # Use cache when possible for better performance
            if cache_key and cache_key in clip_cache:
                return clip_cache[cache_key]
                
            try:
                # Get text size
                text_width, text_height = pil_font.getbbox(text)[2:4]
                
                # Add padding
                padding = 10
                img_width = text_width + padding * 2
                img_height = text_height + padding * 2
                
                # Create image with background color or transparent
                if bg_color:
                    img = Image.new('RGB', (img_width, img_height), color=bg_color_rgb)
                else:
                    img = Image.new('RGBA', (img_width, img_height), color=(0, 0, 0, 0))
                
                # Draw text
                draw = ImageDraw.Draw(img)
                draw.text((padding, padding), text, font=pil_font, fill=text_color_rgb)
                
                # Convert to numpy array for MoviePy
                img_array = np.array(img)
                clip = ImageClip(img_array)
                
                # Cache result for reuse
                if cache_key:
                    clip_cache[cache_key] = (clip, img_width, img_height)
                
                return clip, img_width, img_height
            
            except Exception as e:
                self.log(warning(f"Error creating text clip: {str(e)}"))
                # Create a simple colored rectangle as fallback
                img = Image.new('RGB', (100, 50), color=(100, 100, 100))
                img_array = np.array(img)
                clip = ImageClip(img_array)
                return clip, 100, 50
        
        subtitle_clips = []
        
        # Calculate position constants once
        if settings["position"] == "top":
            y_buffer = frame_size[1] * 0.1  # 10% from top
        elif settings["position"] == "middle":
            y_buffer = frame_size[1] * 0.4  # 40% from top
        else:  # bottom
            y_buffer = frame_size[1] * 0.7  # 70% from top
            
        max_width = frame_size[0] * 0.8  # 80% of frame width
        
        # Group words by timing to reduce number of clips (optimization)
        word_groups = {}
        
        # Process each line more efficiently by grouping
        for line_idx, line in enumerate(subtitle_data["linelevel"]):
            # Group words by start/end times to reduce clip count
            line_text = line["text"]
            line_start = line["start"]
            line_end = line["end"]
            line_duration = line_end - line_start
            
            # First pass: calculate word dimensions and break text into lines
            lines_data = []  # Store data for each line (words, positions)
            current_line = []
            current_x = 0
            
            for word_data in line["words"]:
                word = word_data["word"]
                # Calculate dimensions without creating image yet
                word_width = pil_font.getbbox(word)[2] + 20  # Add padding
                word_height = pil_font.getbbox(word)[3] + 20
                
                # Check if word fits on current line
                if current_x + word_width > max_width and current_line:
                    # Complete current line
                    lines_data.append({
                        "words": current_line.copy(),
                        "total_width": current_x,
                        "height": max(w["height"] for w in current_line) if current_line else word_height
                    })
                    current_line = []
                    current_x = 0
                
                # Add word to current line
                word_info = {
                    "word": word,
                    "width": word_width,
                    "height": word_height,
                    "start": word_data["start"],
                    "end": word_data["end"]
                }
                current_line.append(word_info)
                current_x += word_width
            
            # Add the last line if needed
            if current_line:
                lines_data.append({
                    "words": current_line,
                    "total_width": current_x,
                    "height": max(w["height"] for w in current_line)
                })
            
            # Second pass: Create clip for each line (batch processing)
            current_y = y_buffer
            
            for line_data in lines_data:
                # Calculate center position for entire line
                line_width = line_data["total_width"]
                x_center = (frame_size[0] - line_width) / 2
                
                # Create text clip for complete line (non-highlighted base)
                line_text = " ".join(w["word"] for w in line_data["words"])
                cache_key = f"line_{line_idx}_{line_text}"
                line_clip, measured_width, _ = create_text_clip(line_text, None, cache_key)
                
                # Position the line in the center
                line_clip = line_clip.set_position((x_center, current_y))
                line_clip = line_clip.set_start(line["start"]).set_duration(line_duration)
                subtitle_clips.append(line_clip)
                
                # Add highlighted words if enabled (more efficiently)
                if highlighting_enabled and bg_color:
                    current_x = x_center
                    
                    # Group words with same timing to reduce clip count
                    timing_groups = {}
                    
                    for word_info in line_data["words"]:
                        timing_key = f"{word_info['start']:.3f}_{word_info['end']:.3f}"
                        if timing_key not in timing_groups:
                            timing_groups[timing_key] = []
                        timing_groups[timing_key].append((word_info, current_x))
                        current_x += word_info["width"]
                    
                    # Create one clip per timing group instead of per word
                    for timing_key, word_group in timing_groups.items():
                        start_time, end_time = map(float, timing_key.split('_'))
                        
                        # If only one word in this timing, create single highlight
                        if len(word_group) == 1:
                            word_info, x_pos = word_group[0]
                            word = word_info["word"]
                            
                            cache_key = f"word_{word}"
                            highlight_clip, _, _ = create_text_clip(word, bg_color, cache_key)
                            highlight_clip = highlight_clip.set_position((x_pos, current_y))
                            highlight_clip = highlight_clip.set_start(start_time).set_duration(end_time - start_time)
                            subtitle_clips.append(highlight_clip)
                        else:
                            # Multiple words with same timing - try to batch if adjacent
                            # (This is an optimization for words that appear together)
                            continue_batch = True
                            batch_start_idx = 0
                            
                            while continue_batch and batch_start_idx < len(word_group):
                                # Start a new batch
                                batch = [word_group[batch_start_idx]]
                                batch_x = word_group[batch_start_idx][1]
                                current_batch_end = batch_start_idx
                                
                                # Try to extend batch with adjacent words
                                for i in range(batch_start_idx + 1, len(word_group)):
                                    prev_word, prev_x = word_group[i-1]
                                    curr_word, curr_x = word_group[i]
                                    
                                    # Check if words are adjacent
                                    if abs(prev_x + prev_word["width"] - curr_x) < 5:  # Small tolerance
                                        batch.append(word_group[i])
                                        current_batch_end = i
                                    else:
                                        break
                                
                                # Create clip for this batch
                                if len(batch) > 1:
                                    # Multiple adjacent words - create single highlight
                                    batch_text = " ".join(info[0]["word"] for info in batch)
                                    batch_width = batch[-1][1] + batch[-1][0]["width"] - batch[0][1]
                                    
                                    cache_key = f"batch_{batch_text}"
                                    highlight_clip, _, _ = create_text_clip(batch_text, bg_color, cache_key)
                                    highlight_clip = highlight_clip.set_position((batch_x, current_y))
                                    highlight_clip = highlight_clip.set_start(start_time).set_duration(end_time - start_time)
                                    subtitle_clips.append(highlight_clip)
                                else:
                                    # Single word in batch
                                    word_info, x_pos = batch[0]
                                    word = word_info["word"]
                                    
                                    cache_key = f"word_{word}"
                                    highlight_clip, _, _ = create_text_clip(word, bg_color, cache_key)
                                    highlight_clip = highlight_clip.set_position((x_pos, current_y))
                                    highlight_clip = highlight_clip.set_start(start_time).set_duration(end_time - start_time)
                                    subtitle_clips.append(highlight_clip)
                                
                                # Move to next batch
                                batch_start_idx = current_batch_end + 1
                                if batch_start_idx >= len(word_group):
                                    continue_batch = False
                
                # Move to next line
                current_y += line_data["height"] + 10
        
        # Limit the number of subtitle clips to avoid memory issues
        if len(subtitle_clips) > 200:
            self.log(warning(f"Too many subtitle clips ({len(subtitle_clips)}), limiting to 200 for performance"))
            subtitle_clips = subtitle_clips[:200]
            
        self.log(f"Created {len(subtitle_clips)} subtitle clips (optimized)")
        return subtitle_clips

    def combine(self) -> str:
        """Combine images, audio, and subtitles into a final video."""
        self.progress(0.8, desc="Creating final video")
        self.log("Combining images and audio into final video")
        try:
            # Use RAM for temporary files if possible
            import tempfile
            temp_dir = tempfile.mkdtemp()
            
            # Always save to the generation folder when available
            if hasattr(self, 'generation_folder') and os.path.exists(self.generation_folder):
                output_path = os.path.join(self.generation_folder, f"output_{int(time.time())}.mp4")
            else:
                output_path = os.path.join(STORAGE_DIR, f"output_{int(time.time())}.mp4")
            
            # Check for required files
            if not self.images:
                raise ValueError("No images available for video creation")
            
            if not hasattr(self, 'tts_path') or not self.tts_path or not os.path.exists(self.tts_path):
                raise ValueError("No TTS audio file available")
            
            # Load audio
            tts_clip = AudioFileClip(self.tts_path)
            max_duration = tts_clip.duration
            
            # Calculate duration for each image
            num_images = len(self.images)
            req_dur = max_duration / num_images
            
            # Process each image ONCE to create base clips (optimization)
            self.log("Processing images (optimized)")
            processed_clips = []
            
            for image_path in self.images:
                if not os.path.exists(image_path):
                    self.log(warning(f"Image not found: {image_path}, skipping"))
                    continue
                    
                try:
                    # Load and process image once
                    clip = ImageClip(image_path)
                    
                    # Use lower FPS for slideshow-style videos
                    clip = clip.set_fps(15)
                    
                    # Handle aspect ratio (vertical video for shorts)
                    aspect_ratio = 9/16  # Standard vertical video ratio
                    if clip.w / clip.h < aspect_ratio:
                        # Image is too tall, crop height
                        clip = crop(
                            clip, 
                            width=clip.w, 
                            height=round(clip.w / aspect_ratio), 
                            x_center=clip.w / 2, 
                            y_center=clip.h / 2
                        )
                    else:
                        # Image is too wide, crop width
                        clip = crop(
                            clip, 
                            width=round(aspect_ratio * clip.h), 
                            height=clip.h, 
                            x_center=clip.w / 2, 
                            y_center=clip.h / 2
                        )
                    
                    # Use a more efficient resolution (still good for mobile)
                    clip = clip.resize((720, 1280))
                    
                    processed_clips.append(clip)
                except Exception as e:
                    self.log(warning(f"Error processing image {image_path}: {str(e)}"))
            
            if not processed_clips:
                raise ValueError("No valid images could be processed")
            
            # Create sequence using processed clips, repeated as needed
            self.log(f"Creating video sequence from {len(processed_clips)} clips")
            final_clips = []
            tot_dur = 0
            
            while tot_dur < max_duration:
                for base_clip in processed_clips:
                    duration = min(req_dur, max_duration - tot_dur)
                    if duration <= 0:
                        break
                        
                    # Reuse the pre-processed clip with new duration
                    duration_clip = base_clip.set_duration(duration)
                    final_clips.append(duration_clip)
                    tot_dur += duration
                    
                    if tot_dur >= max_duration:
                        break
            
            # Create video from sequence
            self.log(f"Concatenating {len(final_clips)} clips")
            final_clip = concatenate_videoclips(final_clips)
            final_clip = final_clip.set_fps(15)  # Lower FPS for slideshow-style
            
            # Process audio
            final_audio = tts_clip
            
            # Add background music if available and enabled
            if hasattr(self, 'enable_music') and self.enable_music and self.music_file != "none":
                music_path = None
                if self.music_file == "random":
                    music_path = choose_random_music()
                elif os.path.exists(os.path.join(MUSIC_DIR, self.music_file)):
                    music_path = os.path.join(MUSIC_DIR, self.music_file)
                    
                if music_path and os.path.exists(music_path):
                    self.log(f"Adding background music: {music_path}")
                    try:
                        music_clip = AudioFileClip(music_path)
                        # Loop music if it's shorter than the video
                        if music_clip.duration < max_duration:
                            num_loops = int(np.ceil(max_duration / music_clip.duration))
                            music_clip = concatenate_audioclips([music_clip] * num_loops)
                        # Trim music if it's longer than the video
                        music_clip = music_clip.subclip(0, max_duration)
                        # Set music volume
                        music_volume = getattr(self, 'music_volume', 0.1)
                        music_clip = music_clip.volumex(music_volume)
                        # Combine with TTS audio
                        final_audio = CompositeAudioClip([tts_clip, music_clip])
                    except Exception as e:
                        self.log(warning(f"Error processing music: {str(e)}"))
            
            # Set final audio
            final_clip = final_clip.set_audio(final_audio)
            
            # Add subtitles if enabled - process more efficiently
            if self.subtitles_enabled and hasattr(self, 'subtitle_data'):
                self.log("Adding subtitles (optimized)")
                subtitle_clips = self.create_subtitle_clip(self.subtitle_data, (720, 1280))  # Match new resolution
                if subtitle_clips:
                    final_clip = CompositeVideoClip([final_clip] + subtitle_clips)
            
            # Write final video with optimized settings
            self.log("Writing final video file (optimized encoding)")
            final_clip.write_videofile(
                output_path,
                fps=15,               # Lower FPS for slideshow-style
                codec="libx264",
                audio_codec="aac",
                threads=8,            # More threads for faster encoding
                preset="ultrafast",   # Fastest encoding preset
                ffmpeg_params=["-crf", "28"]  # Lower quality for speed
            )
            
            # Clean up temporary directory
            import shutil
            try:
                shutil.rmtree(temp_dir, ignore_errors=True)
            except Exception:
                pass
                
            self.log(success(f"Video saved to: {output_path}"))
            return output_path
            
        except Exception as e:
            error_msg = f"Error combining video: {str(e)}"
            self.log(error(error_msg))
            raise Exception(error_msg)

    def generate_video(self) -> dict:
        """Generate complete video with all components."""
        try:
            self.log("Starting video generation process")
            
            # Create a unique folder with sequential numbering
            folder_num = 1
            # Check existing folders to find the latest number
            if os.path.exists(STORAGE_DIR):
                existing_folders = [d for d in os.listdir(STORAGE_DIR) if os.path.isdir(os.path.join(STORAGE_DIR, d))]
                numbered_folders = []
                for folder in existing_folders:
                    try:
                        # Extract folder number from format "N_UUID"
                        if "_" in folder:
                            num = int(folder.split("_")[0])
                            numbered_folders.append(num)
                    except (ValueError, IndexError):
                        continue
                
                if numbered_folders:
                    folder_num = max(numbered_folders) + 1
            
            folder_id = f"{folder_num}_{str(uuid.uuid4())}"
            self.generation_folder = os.path.join(STORAGE_DIR, folder_id)
            os.makedirs(self.generation_folder, exist_ok=True)
            self.log(f"Created generation folder: {self.generation_folder}")
            
            try:
                # Step 1: Generate topic
                self.log("Generating topic")
                self.generate_topic()
                
                # Step 2: Generate script
                self.progress(0.1, desc="Creating script")
                self.log("Generating script")
                self.generate_script()
                
                # Step 3: Generate metadata
                self.progress(0.2, desc="Creating metadata")
                self.log("Generating metadata")
                self.generate_metadata()
                
                # Step 4: Generate image prompts
                self.progress(0.3, desc="Creating image prompts")
                self.log("Generating image prompts")
                self.generate_prompts()
                
                # Step 5: Generate images
                self.progress(0.4, desc="Generating images")
                self.log("Generating images")
                for i, prompt in enumerate(self.image_prompts, 1):
                    self.progress(0.4 + 0.2 * (i / len(self.image_prompts)), 
                                desc=f"Generating image {i}/{len(self.image_prompts)}")
                    self.log(f"Generating image {i}/{len(self.image_prompts)}")
                    self.generate_image(prompt)
                
                # Step 6: Generate speech
                self.progress(0.6, desc="Creating speech")
                self.log("Generating speech")
                self.generate_speech(self.script)
                
                # Step 7: Generate subtitles
                self.progress(0.7, desc="Generating subtitles")
                if self.subtitles_enabled and hasattr(self, 'tts_path') and os.path.exists(self.tts_path):
                    self.subtitle_data = self.generate_subtitles(self.tts_path)
                    # Save subtitles to generation folder
                    if self.subtitle_data:
                        try:
                            # Save word-level subtitles
                            if 'wordlevel' in self.subtitle_data:
                                word_subtitles_path = os.path.join(self.generation_folder, "word_subtitles.json")
                                with open(word_subtitles_path, 'w') as f:
                                    json.dump(self.subtitle_data['wordlevel'], f, indent=2)
                                self.log(f"Saved word-level subtitles to: {word_subtitles_path}")
                            
                            # Save line-level subtitles
                            if 'linelevel' in self.subtitle_data:
                                line_subtitles_path = os.path.join(self.generation_folder, "line_subtitles.json")
                                with open(line_subtitles_path, 'w') as f:
                                    json.dump(self.subtitle_data['linelevel'], f, indent=2)
                                self.log(f"Saved line-level subtitles to: {line_subtitles_path}")
                        except Exception as e:
                            self.log(warning(f"Error saving subtitles to generation folder: {str(e)}"))
                
                # Step 8: Save content.txt with all metadata and generation info
                self.progress(0.75, desc="Saving generation data")
                try:
                    content_path = os.path.join(self.generation_folder, "content.txt")
                    with open(content_path, 'w', encoding='utf-8') as f:
                        f.write(f"NICHE: {self.niche}\n\n")
                        f.write(f"LANGUAGE: {self.language}\n\n")
                        f.write(f"GENERATED TOPIC: {self.subject}\n\n")
                        f.write(f"GENERATED SCRIPT:\n{self.script}\n\n")
                        f.write(f"GENERATED PROMPTS:\n")
                        for i, prompt in enumerate(self.image_prompts, 1):
                            f.write(f"{i}. {prompt}\n")
                        f.write("\n")
                        f.write(f"GENERATED METADATA:\n")
                        for key, value in self.metadata.items():
                            f.write(f"{key}: {value}\n")
                    self.log(f"Saved content.txt to: {content_path}")
                except Exception as e:
                    self.log(warning(f"Error saving content.txt: {str(e)}"))
                
                # Step 9: Combine all elements into final video with optimized rendering
                self.progress(0.8, desc="Creating final video")
                self.log("Combining all elements into final video (optimized rendering)")
                
                # Clear memory before video rendering
                import gc
                gc.collect()
                
                path = self.combine()
                
                self.progress(0.95, desc="Finalizing")
                self.log(f"Video generation complete. Files saved in: {self.generation_folder}")
                
                # Return the result
                return {
                    'video_path': path,
                    'generation_folder': self.generation_folder,
                    'title': self.metadata['title'],
                    'description': self.metadata['description'],
                    'subject': self.subject,
                    'script': self.script,
                    'logs': self.logs
                }
            except Exception as e:
                error_msg = f"Error during video generation step: {str(e)}"
                self.log(error(error_msg))
                # Try to clean up any resources
                self.cleanup_resources()
                raise Exception(error_msg)
            
        except Exception as e:
            error_msg = f"Error during video generation: {str(e)}"
            self.log(error(error_msg))
            raise Exception(error_msg)
            
    def cleanup_resources(self):
        """Clean up any resources to prevent memory leaks."""
        try:
            # Force close any remaining ImageMagick processes
            import psutil
            for proc in psutil.process_iter():
                try:
                    # Check if process name contains ImageMagick or ffmpeg
                    if 'magick' in proc.name().lower() or 'ffmpeg' in proc.name().lower():
                        proc.kill()
                except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
                    pass
            
            # Force garbage collection
            import gc
            gc.collect()
        except Exception as e:
            self.log(warning(f"Error during resource cleanup: {str(e)}"))
            pass

# Data for dynamic dropdowns
def get_text_generator_models(generator):
    """Get available models for the selected text generator."""
    models = {
        "gemini": [
            "gemini-2.0-flash", 
            "gemini-2.0-flash-lite", 
            "gemini-1.5-flash", 
            "gemini-1.5-flash-8b", 
            "gemini-1.5-pro"
        ],
        "g4f": [
            "gpt-4",
            "gpt-4o", 
            "gpt-3.5-turbo", 
            "llama-3-70b-chat", 
            "claude-3-opus-20240229", 
            "claude-3-sonnet-20240229", 
            "claude-3-haiku-20240307"
        ],
        "openai": [
            "gpt-4o",
            "gpt-4-turbo", 
            "gpt-3.5-turbo"
        ]
    }
    return models.get(generator, ["default"])

def get_image_generator_models(generator):
    """Get available models for the selected image generator."""
    models = {
        "prodia": [
            "sdxl", 
            "realvisxl", 
            "juggernaut", 
            "dreamshaper", 
            "dalle"
        ],
        "hercai": [
            "v1", 
            "v2", 
            "v3", 
            "lexica"
        ],
        "g4f": [
            "flux",
            "dall-e-3", 
            "dall-e-2", 
            "midjourney"
        ],
        "segmind": [
            "sdxl-turbo", 
            "realistic-vision", 
            "sd3"
        ],
        "pollinations": [
            "default"
        ]
    }
    return models.get(generator, ["default"])

def get_tts_voices(engine):
    """Get available voices for the selected TTS engine."""
    voices = {
        "elevenlabs": [
            "Sarah",      # Female, American accent
            "Brian",      # Male, British accent
            "Lily",       # Female, British accent 
            "Monika Sogam", # Female, Indian accent
            "George",     # Male, American accent
            "River",      # Female, American accent
            "Matilda",    # Female, British accent
            "Will",       # Male, American accent
            "Jessica"     # Female, American accent
        ],
        "openai": [
            "alloy", 
            "echo", 
            "fable", 
            "onyx", 
            "nova", 
            "shimmer"
        ],
        "edge": [
            "en-US-AriaNeural", 
            "en-US-GuyNeural", 
            "en-GB-SoniaNeural", 
            "en-AU-NatashaNeural"
        ],
        "gtts": [
            "en", 
            "es", 
            "fr", 
            "de", 
            "it", 
            "pt", 
            "ru", 
            "ja", 
            "zh", 
            "hi"
        ]
    }
    return voices.get(engine, ["default"])

# Create the Gradio interface
def create_interface():
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", radius_size="lg"), title="YouTube Shorts Generator") as demo:
        with gr.Row():
            gr.Markdown(
                """
                # πŸ“± YouTube Shorts Generator
                Generate engaging YouTube Shorts videos with AI. Just provide a niche and language to get started!
                """
            )
            
        with gr.Row(equal_height=True):
            # Left panel: Content Settings
            with gr.Column(scale=2, min_width=500):
                with gr.Group():
                    gr.Markdown("### πŸ“ Content")
                    niche = gr.Textbox(
                        label="Niche/Topic", 
                        placeholder="What's your video about?",
                        value="Historical Facts"
                    )
                    language = gr.Dropdown(
                        choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", 
                                "Russian", "Japanese", "Chinese", "Hindi"],
                        label="Language",
                        value="English"
                    )
                
                # Generator Settings
                with gr.Group():
                    gr.Markdown("### πŸ”§ Generator Settings")
                    with gr.Tabs():
                        with gr.TabItem("Text"):
                            text_gen = gr.Dropdown(
                                choices=["g4f", "gemini", "openai"], 
                                label="Text Generator",
                                value="g4f"
                            )
                            text_model = gr.Dropdown(
                                choices=get_text_generator_models("g4f"), 
                                label="Text Model",
                                value="gpt-4"
                            )
                        
                        with gr.TabItem("Image"):
                            image_gen = gr.Dropdown(
                                choices=["g4f", "prodia", "hercai", "segmind", "pollinations"],
                                label="Image Generator",
                                value="g4f"
                            )
                            image_model = gr.Dropdown(
                                choices=get_image_generator_models("g4f"),
                                label="Image Model",
                                value="flux"
                            )
                        
                        with gr.TabItem("Speech"):
                            tts_engine = gr.Dropdown(
                                choices=["edge", "elevenlabs", "gtts", "openai"],
                                label="Speech Generator",
                                value="edge"
                            )
                            tts_voice = gr.Dropdown(
                                choices=get_tts_voices("edge"),
                                label="Voice",
                                value="en-US-AriaNeural"
                            )
                        
                        with gr.TabItem("Audio"):
                            enable_music = gr.Checkbox(label="Enable Background Music", value=True)
                            # Fix for music_file - Get available music and set proper default
                            music_choices = get_music_files()
                            default_music = "none" if "random" not in music_choices else "random"
                            music_file = gr.Dropdown(
                                choices=music_choices,
                                label="Background Music",
                                value=default_music,
                                interactive=True
                            )
                            music_volume = gr.Slider(
                                minimum=0.0,
                                maximum=1.0,
                                value=0.1,
                                step=0.05,
                                label="Background Music Volume"
                            )
                        
                        with gr.TabItem("Subtitles"):
                            subtitles_enabled = gr.Checkbox(label="Enable Subtitles", value=True)
                            highlighting_enabled = gr.Checkbox(label="Enable Word Highlighting", value=True)
                            subtitle_font = gr.Dropdown(
                                choices=get_font_files(),
                                label="Font",
                                value="random"
                            )
                            with gr.Row():
                                font_size = gr.Slider(
                                    minimum=40,
                                    maximum=120,
                                    value=80,
                                    step=5,
                                    label="Font Size"
                                )
                                subtitle_position = gr.Dropdown(
                                    choices=["bottom", "middle", "top"],
                                    label="Position",
                                    value="bottom"
                                )
                            with gr.Row():
                                text_color = gr.ColorPicker(label="Text Color", value="#FFFFFF")
                                highlight_color = gr.ColorPicker(label="Highlight Color", value="#0000FF")
                
                # Generate button
                generate_btn = gr.Button("🎬 Generate Video", variant="primary", size="lg")
            
            # Right panel: Output display
            with gr.Column(scale=1, min_width=300):
                with gr.Tabs():
                    with gr.TabItem("Video"):
                        # Larger video preview with proper mobile proportions
                        video_output = gr.Video(label="Generated Video", height=580, width=330)
                        
                    with gr.TabItem("Metadata"):
                        title_output = gr.Textbox(label="Title", lines=2)
                        description_output = gr.Textbox(label="Description", lines=4)
                        script_output = gr.Textbox(label="Script", lines=8)
                    
                    # API Keys section as a tab    
                    with gr.TabItem("πŸ”‘ API Keys"):
                        gemini_api_key = gr.Textbox(
                            label="Gemini API Key", 
                            type="password",
                            value=os.environ.get("GEMINI_API_KEY", "")
                        )
                        assemblyai_api_key = gr.Textbox(
                            label="AssemblyAI API Key", 
                            type="password",
                            value=os.environ.get("ASSEMBLYAI_API_KEY", "")
                        )
                        elevenlabs_api_key = gr.Textbox(
                            label="ElevenLabs API Key", 
                            type="password",
                            value=os.environ.get("ELEVENLABS_API_KEY", "")
                        )
                        segmind_api_key = gr.Textbox(
                            label="Segmind API Key", 
                            type="password",
                            value=os.environ.get("SEGMIND_API_KEY", "")
                        )
                        openai_api_key = gr.Textbox(
                            label="OpenAI API Key", 
                            type="password",
                            value=os.environ.get("OPENAI_API_KEY", "")
                        )
                        
                    with gr.TabItem("Log"):
                        log_output = gr.Textbox(label="Process Log", lines=15, max_lines=100)
        
        # Dynamic dropdown updates
        def update_text_models(generator):
            return gr.Dropdown(choices=get_text_generator_models(generator))
        
        def update_image_models(generator):
            return gr.Dropdown(choices=get_image_generator_models(generator))
        
        def update_tts_voices(engine):
            return gr.Dropdown(choices=get_tts_voices(engine))
        
        # Connect the change events
        text_gen.change(fn=update_text_models, inputs=text_gen, outputs=text_model)
        image_gen.change(fn=update_image_models, inputs=image_gen, outputs=image_model)
        tts_engine.change(fn=update_tts_voices, inputs=tts_engine, outputs=tts_voice)
        
        # Main generation function
        def generate_youtube_short(niche, language, text_gen, text_model, image_gen, image_model, 
                                  tts_engine, tts_voice, subtitles_enabled, highlighting_enabled,
                                  subtitle_font, font_size, subtitle_position, 
                                  text_color, highlight_color, music_file, 
                                  enable_music, music_volume,
                                  gemini_api_key, assemblyai_api_key, 
                                  elevenlabs_api_key, segmind_api_key, openai_api_key, 
                                  progress=gr.Progress()):
            
            if not niche.strip():
                return {
                    video_output: None,
                    title_output: "ERROR: Please enter a niche/topic",
                    description_output: "",
                    script_output: "",
                    log_output: "Error: Niche/Topic is required. Please enter a valid topic and try again."
                }
            
            # Create API keys dictionary
            api_keys = {
                'gemini': gemini_api_key,
                'assemblyai': assemblyai_api_key,
                'elevenlabs': elevenlabs_api_key,
                'segmind': segmind_api_key,
                'openai': openai_api_key
            }
            
            try:
                # Initialize YouTube class
                yt = YouTube(
                    niche=niche,
                    language=language,
                    text_gen=text_gen,
                    text_model=text_model,
                    image_gen=image_gen,
                    image_model=image_model,
                    tts_engine=tts_engine,
                    tts_voice=tts_voice,
                    subtitle_font=subtitle_font,
                    font_size=font_size,
                    text_color=text_color,
                    highlight_color=highlight_color,
                    subtitles_enabled=subtitles_enabled,
                    highlighting_enabled=highlighting_enabled,
                    subtitle_position=subtitle_position,
                    music_file=music_file,
                    enable_music=enable_music,
                    music_volume=music_volume,
                    api_keys=api_keys,
                    progress=progress
                )
                
                # Generate video
                result = yt.generate_video()
                
                # Check if video was successfully created
                if not result or not result.get('video_path') or not os.path.exists(result.get('video_path', '')):
                    return {
                        video_output: None,
                        title_output: "ERROR: Video generation failed",
                        description_output: "",
                        script_output: "",
                        log_output: "\n".join(yt.logs)
                    }
                
                return {
                    video_output: result['video_path'],
                    title_output: result['title'],
                    description_output: result['description'],
                    script_output: result['script'],
                    log_output: "\n".join(result['logs'])
                }
                
            except Exception as e:
                import traceback
                error_details = f"Error: {str(e)}\n\n{traceback.format_exc()}"
                return {
                    video_output: None,
                    title_output: f"ERROR: {str(e)}",
                    description_output: "",
                    script_output: "",
                    log_output: error_details
                }
        
        # Connect the button click event
        generate_btn.click(
            fn=generate_youtube_short,
            inputs=[
                niche, language, text_gen, text_model, image_gen, image_model,
                tts_engine, tts_voice, subtitles_enabled, highlighting_enabled,
                subtitle_font, font_size, subtitle_position, text_color, highlight_color, music_file,
                enable_music, music_volume, gemini_api_key, assemblyai_api_key, elevenlabs_api_key, segmind_api_key, openai_api_key
            ],
            outputs=[video_output, title_output, description_output, script_output, log_output]
        )
        
        # Add examples
        music_choices = get_music_files()
        default_music = "none" if "random" not in music_choices else "random"
        
        gr.Examples(
            [
                ["Historical Facts", "English", "g4f", "gpt-4", "g4f", "flux", "edge", "en-US-AriaNeural", True, True, "default", 80, "bottom", "#FFFFFF", "#0000FF", default_music, True, 0.1],
                ["Cooking Tips", "English", "g4f", "gpt-4", "g4f", "flux", "edge", "en-US-AriaNeural", True, True, "default", 80, "bottom", "#FFFFFF", "#FF0000", default_music, True, 0.1],
                ["Technology News", "English", "g4f", "gpt-4", "g4f", "flux", "edge", "en-US-GuyNeural", True, True, "default", 80, "bottom", "#FFFFFF", "#00FF00", default_music, True, 0.1],
            ],
            [niche, language, text_gen, text_model, image_gen, image_model, tts_engine, tts_voice, 
             subtitles_enabled, highlighting_enabled, subtitle_font, font_size, 
             subtitle_position, text_color, highlight_color, music_file, enable_music, music_volume],
            label="Quick Start Templates"
        )
        
    return demo

# Create and launch the interface
if __name__ == "__main__":
    # Create necessary directories
    os.makedirs(STATIC_DIR, exist_ok=True)
    os.makedirs(MUSIC_DIR, exist_ok=True)
    os.makedirs(FONTS_DIR, exist_ok=True)
    os.makedirs(STORAGE_DIR, exist_ok=True)
    
    # Launch the app
    demo = create_interface()
    demo.launch()