File size: 6,106 Bytes
04fa07a
 
 
2d71661
04fa07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d71661
 
04fa07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d71661
 
04fa07a
 
2d71661
04fa07a
 
 
2d71661
04fa07a
 
2d71661
 
04fa07a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import requests
import pandas as pd
import numpy as np
import joblib
import google.generativeai as genai
import gradio as gr
from google.colab import drive, userdata
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy

# --- CONFIGURATION ---
# Coordinates for a representative forest area in Pakistan
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
    "https://archive-api.open-meteo.com/v1/archive"
    "?latitude={lat}&longitude={lon}"
    "&start_date={start}&end_date={end}"
    "&daily=temperature_2m_max,temperature_2m_min,"
    "precipitation_sum,windspeed_10m_max,"
    "relative_humidity_2m_max,relative_humidity_2m_min"
    "&timezone=UTC"
)

# --- GEMINI SETUP ---
GOOGLE_API_KEY = userdata.get('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
flash = genai.GenerativeModel('gemini-1.5-flash')

# --- LOAD MODELS ---
def load_models():
    drive.mount('/content/drive', force_remount=False)
    # Fire detection (VGG16 binary classifier)
    vgg_model = load_model(
        '/content/drive/MyDrive/vgg16_focal_unfreeze_more.keras',
        custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
    )
    # Severity classification (Xception + RF/XGB ensemble)
    def focal_loss_fixed(gamma=2., alpha=.25):
        import tensorflow.keras.backend as K
        def loss_fn(y_true, y_pred):
            eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
            ce = -y_true * K.log(y_pred)
            w = alpha * K.pow(1-y_pred, gamma)
            return K.mean(w*ce, axis=-1)
        return loss_fn
    xce_model = load_model(
        '/content/drive/My Drive/severity_post_tta.keras',
        custom_objects={'focal_loss_fixed': focal_loss_fixed()}
    )
    rf_model = joblib.load('/content/drive/My Drive/ensemble_rf_model.pkl')
    xgb_model = joblib.load('/content/drive/My Drive/ensemble_xgb_model.pkl')
    # Weather trend (Logistic Regression)
    lr_model = joblib.load('/content/drive/MyDrive/wildfire_logistic_model_synthetic.joblib')
    return vgg_model, xce_model, rf_model, xgb_model, lr_model

vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()

# --- LABEL MAPS ---
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
trend_rules = {
    'mild':    {'decrease':'mild','same':'mild','increase':'moderate'},
    'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
    'severe':  {'decrease':'moderate','same':'severe','increase':'severe'}
}

# --- PIPELINE FUNCTIONS ---
def detect_fire(img):
    x = keras_image.img_to_array(img.resize((128,128)))[None]
    x = vgg_preprocess(x)
    prob = float(vgg_model.predict(x)[0][0])
    return prob >= 0.5, prob


def classify_severity(img):
    x = keras_image.img_to_array(img.resize((224,224)))[None]
    x = xce_preprocess(x)
    preds = xception_model.predict(x)
    rf_p = rf_model.predict(preds)[0]
    xgb_p = xgb_model.predict(preds)[0]
    ensemble = int(round((rf_p + xgb_p)/2))
    return target_map.get(ensemble, 'moderate')


def fetch_weather_trend(lat, lon):
    end = datetime.utcnow()
    start = end - timedelta(days=1)
    url = API_URL.format(lat=lat, lon=lon,
                         start=start.strftime('%Y-%m-%d'),
                         end=end.strftime('%Y-%m-%d'))
    data = requests.get(url).json().get('daily', {})
    df = pd.DataFrame(data)
    # convert to numeric
    for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
              'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
        df[c] = pd.to_numeric(df.get(c, []), errors='coerce')
    df['precipitation'] = df['precipitation_sum'].fillna(0)
    df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
    df['humidity']    = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
    df['wind_speed']  = df['windspeed_10m_max']
    df['fire_risk_score'] = (
        0.4*(df['temperature']/55) +
        0.2*(1-df['humidity']/100) +
        0.3*(df['wind_speed']/60) +
        0.1*(1-df['precipitation']/50)
    )
    feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
    v = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
    trend_cl = lr_model.predict(v)[0]
    return trend_map.get(trend_cl)


def generate_recommendations(wildfire_present, severity, weather_trend):
    prompt = f"""
You are a wildfire management expert.
- Wildfire Present: {wildfire_present}
- Severity: {severity}
- Weather Trend: {weather_trend}
Provide:
1. Immediate actions
2. Evacuation guidelines
3. Short-term containment
4. Long-term prevention & recovery
5. Community education
"""
    return flash.generate_content(prompt).text

# --- GRADIO INTERFACE ---
def pipeline(image):
    img = Image.fromarray(image).convert('RGB')
    fire, prob = detect_fire(img)
    if not fire:
        return f"No wildfire detected (prob={prob:.2f})", "N/A", "No wildfire detected. Stay alert."
    severity = classify_severity(img)
    trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
    recs = generate_recommendations(True, severity, trend)
    return f"Fire Detected (prob={prob:.2f})", severity.title(), recs

interface = gr.Interface(
    fn=pipeline,
    inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
    outputs=[
        gr.Textbox(label='Fire Status'),
        gr.Textbox(label='Severity Level'),
        gr.Markdown(label='Recommendations')
    ],
    title='Wildfire Detection & Management Assistant',
    description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, and get expert recommendations.'
)

if __name__ == '__main__':
    interface.launch()