Spaces:
Sleeping
Sleeping
File size: 6,106 Bytes
04fa07a 2d71661 04fa07a 2d71661 04fa07a 2d71661 04fa07a 2d71661 04fa07a 2d71661 04fa07a 2d71661 04fa07a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os
import requests
import pandas as pd
import numpy as np
import joblib
import google.generativeai as genai
import gradio as gr
from google.colab import drive, userdata
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
# --- CONFIGURATION ---
# Coordinates for a representative forest area in Pakistan
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
"https://archive-api.open-meteo.com/v1/archive"
"?latitude={lat}&longitude={lon}"
"&start_date={start}&end_date={end}"
"&daily=temperature_2m_max,temperature_2m_min,"
"precipitation_sum,windspeed_10m_max,"
"relative_humidity_2m_max,relative_humidity_2m_min"
"&timezone=UTC"
)
# --- GEMINI SETUP ---
GOOGLE_API_KEY = userdata.get('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
flash = genai.GenerativeModel('gemini-1.5-flash')
# --- LOAD MODELS ---
def load_models():
drive.mount('/content/drive', force_remount=False)
# Fire detection (VGG16 binary classifier)
vgg_model = load_model(
'/content/drive/MyDrive/vgg16_focal_unfreeze_more.keras',
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
)
# Severity classification (Xception + RF/XGB ensemble)
def focal_loss_fixed(gamma=2., alpha=.25):
import tensorflow.keras.backend as K
def loss_fn(y_true, y_pred):
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
ce = -y_true * K.log(y_pred)
w = alpha * K.pow(1-y_pred, gamma)
return K.mean(w*ce, axis=-1)
return loss_fn
xce_model = load_model(
'/content/drive/My Drive/severity_post_tta.keras',
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
)
rf_model = joblib.load('/content/drive/My Drive/ensemble_rf_model.pkl')
xgb_model = joblib.load('/content/drive/My Drive/ensemble_xgb_model.pkl')
# Weather trend (Logistic Regression)
lr_model = joblib.load('/content/drive/MyDrive/wildfire_logistic_model_synthetic.joblib')
return vgg_model, xce_model, rf_model, xgb_model, lr_model
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
# --- LABEL MAPS ---
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
trend_rules = {
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
}
# --- PIPELINE FUNCTIONS ---
def detect_fire(img):
x = keras_image.img_to_array(img.resize((128,128)))[None]
x = vgg_preprocess(x)
prob = float(vgg_model.predict(x)[0][0])
return prob >= 0.5, prob
def classify_severity(img):
x = keras_image.img_to_array(img.resize((224,224)))[None]
x = xce_preprocess(x)
preds = xception_model.predict(x)
rf_p = rf_model.predict(preds)[0]
xgb_p = xgb_model.predict(preds)[0]
ensemble = int(round((rf_p + xgb_p)/2))
return target_map.get(ensemble, 'moderate')
def fetch_weather_trend(lat, lon):
end = datetime.utcnow()
start = end - timedelta(days=1)
url = API_URL.format(lat=lat, lon=lon,
start=start.strftime('%Y-%m-%d'),
end=end.strftime('%Y-%m-%d'))
data = requests.get(url).json().get('daily', {})
df = pd.DataFrame(data)
# convert to numeric
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
df[c] = pd.to_numeric(df.get(c, []), errors='coerce')
df['precipitation'] = df['precipitation_sum'].fillna(0)
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
df['wind_speed'] = df['windspeed_10m_max']
df['fire_risk_score'] = (
0.4*(df['temperature']/55) +
0.2*(1-df['humidity']/100) +
0.3*(df['wind_speed']/60) +
0.1*(1-df['precipitation']/50)
)
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
v = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
trend_cl = lr_model.predict(v)[0]
return trend_map.get(trend_cl)
def generate_recommendations(wildfire_present, severity, weather_trend):
prompt = f"""
You are a wildfire management expert.
- Wildfire Present: {wildfire_present}
- Severity: {severity}
- Weather Trend: {weather_trend}
Provide:
1. Immediate actions
2. Evacuation guidelines
3. Short-term containment
4. Long-term prevention & recovery
5. Community education
"""
return flash.generate_content(prompt).text
# --- GRADIO INTERFACE ---
def pipeline(image):
img = Image.fromarray(image).convert('RGB')
fire, prob = detect_fire(img)
if not fire:
return f"No wildfire detected (prob={prob:.2f})", "N/A", "No wildfire detected. Stay alert."
severity = classify_severity(img)
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
recs = generate_recommendations(True, severity, trend)
return f"Fire Detected (prob={prob:.2f})", severity.title(), recs
interface = gr.Interface(
fn=pipeline,
inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
outputs=[
gr.Textbox(label='Fire Status'),
gr.Textbox(label='Severity Level'),
gr.Markdown(label='Recommendations')
],
title='Wildfire Detection & Management Assistant',
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, and get expert recommendations.'
)
if __name__ == '__main__':
interface.launch() |