File size: 1,482 Bytes
3b79a29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
import tensorflow as tf
from PIL import Image
import numpy as np

# Load models
vgg16_model = tf.keras.models.load_model(
    "/content/drive/MyDrive/Deep Learning Project/vgg16_best_model.keras"
)
xception_model = tf.keras.models.load_model(
    "/content/drive/MyDrive/Deep Learning Project/Tri Classification/xception_best.keras"
)


def predict_fire(image):
    img = Image.fromarray(image).convert("RGB")
    img = img.resize((224, 224))  # Match model input size
    img_array = np.array(img) / 255.0
    img_array = np.expand_dims(img_array, axis=0)

    fire_pred = vgg16_model.predict(img_array)
    fire_status = "Fire Detected" if fire_pred[0][0] > 0.5 else "No Fire Detected"

    if fire_status == "Fire Detected":
        severity_pred = xception_model.predict(img_array)
        severity_level = np.argmax(severity_pred[0])
        severity = ["Mild", "Moderate", "Severe"][severity_level]
    else:
        severity = "N/A"

    return fire_status, severity


# Gradio interface
interface = gr.Interface(
    fn=predict_fire,
    inputs=gr.Image(type="numpy", label="Upload Image"),
    outputs=[
        gr.Textbox(label="Fire Status"),
        gr.Textbox(label="Severity Level"),
    ],
    title="Fire Prediction and Severity Classification",
    description="Upload an image to predict fire and its severity level (Mild, Moderate, Severe).",
)

if __name__ == "__main__":
    interface.launch()