EmberDeepAI / app.py
AbdullahImran's picture
Update app.py
b7608ef verified
raw
history blame
6.81 kB
import os
import requests
import pandas as pd
import numpy as np
import joblib
import gradio as gr
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
from PIL import Image
# --- CONFIGURATION ---
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
"https://archive-api.open-meteo.com/v1/archive"
"?latitude={lat}&longitude={lon}"
"&start_date={start}&end_date={end}"
"&daily=temperature_2m_max,temperature_2m_min,"
"precipitation_sum,windspeed_10m_max,"
"relative_humidity_2m_max,relative_humidity_2m_min"
"&timezone=UTC"
)
# --- LOAD MODELS ---
def load_models():
# Fire detector (VGG16)
vgg_model = load_model(
'vgg16_focal_unfreeze_more.keras',
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
)
# Severity classifier (Xception)
def focal_loss_fixed(gamma=2., alpha=.25):
import tensorflow.keras.backend as K
def loss_fn(y_true, y_pred):
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
ce = -y_true * K.log(y_pred)
w = alpha * K.pow(1-y_pred, gamma)
return K.mean(w * ce, axis=-1)
return loss_fn
xce_model = load_model(
'severity_post_tta.keras',
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
)
rf_model = joblib.load('ensemble_rf_model.pkl')
xgb_model = joblib.load('ensemble_xgb_model.pkl')
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
return vgg_model, xce_model, rf_model, xgb_model, lr_model
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
# --- RULES & TEMPLATES ---
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
# severity transition rules
task_rules = {
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
}
# static recommendation templates per severity
templates = {
'mild': (
"**1. Immediate actions:** Monitor fire; deploy spot crews.\n"
"**2. Evacuation:** No mass evacuation; notify nearby communities.\n"
"**3. Short-term containment:** Establish fire lines.\n"
"**4. Long-term prevention:** Controlled underburning; vegetation management.\n"
"**5. Education:** Inform public on firewatch and reporting." ),
'moderate': (
"**1. Immediate actions:** Dispatch engines and aerial support.\n"
"**2. Evacuation:** Prepare evacuation zones; advise voluntary evacuation.\n"
"**3. Short-term containment:** Build fire breaks; water drops.\n"
"**4. Long-term prevention:** Fuel reduction programs.\n"
"**5. Education:** Community drills and awareness campaigns." ),
'severe': (
"**1. Immediate actions:** Full suppression with air tankers.\n"
"**2. Evacuation:** Mandatory evacuation; open shelters.\n"
"**3. Short-term containment:** Fire retardant lines; backfires.\n"
"**4. Long-term prevention:** Reforestation; infrastructure hardening.\n"
"**5. Education:** Emergency response training; risk communication." )
}
# --- PIPELINE FUNCTIONS ---
def detect_fire(img):
x = keras_image.img_to_array(img.resize((128,128)))[None]
x = vgg_preprocess(x)
prob = float(vgg_model.predict(x)[0][0])
return prob >= 0.5, prob
def classify_severity(img):
x = keras_image.img_to_array(img.resize((224,224)))[None]
x = xce_preprocess(x)
preds = xception_model.predict(x)
rf_p = rf_model.predict(preds)[0]
xgb_p = xgb_model.predict(preds)[0]
ensemble = int(round((rf_p + xgb_p)/2))
return target_map.get(ensemble, 'moderate')
def fetch_weather_trend(lat, lon):
end = datetime.utcnow()
start = end - timedelta(days=1)
url = API_URL.format(lat=lat, lon=lon,
start=start.strftime('%Y-%m-%d'),
end=end.strftime('%Y-%m-%d'))
data = requests.get(url).json().get('daily', {})
df = pd.DataFrame(data)
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
df[c] = pd.to_numeric(df.get(c,[]), errors='coerce')
df['precipitation'] = df['precipitation_sum'].fillna(0)
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
df['wind_speed'] = df['windspeed_10m_max']
df['fire_risk_score'] = (
0.4*(df['temperature']/55) +
0.2*(1-df['humidity']/100) +
0.3*(df['wind_speed']/60) +
0.1*(1-df['precipitation']/50)
)
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
trend_cl = lr_model.predict(feat)[0]
return trend_map.get(trend_cl, 'same')
def generate_recommendations(original_severity, weather_trend):
# determine projected severity
proj = task_rules[original_severity][weather_trend]
rec = templates[proj]
header = f"**Original:** {original_severity.title()}
**Trend:** {weather_trend.title()}
**Projected:** {proj.title()}\n\n"
return header + rec
# --- GRADIO INTERFACE ---
def pipeline(image):
img = Image.fromarray(image).convert('RGB')
fire, prob = detect_fire(img)
if not fire:
return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
sev = classify_severity(img)
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
recs = generate_recommendations(sev, trend)
return f"Fire Detected (prob={prob:.2f})", sev.title(), trend, recs
interface = gr.Interface(
fn=pipeline,
inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
outputs=[
gr.Textbox(label='Fire Status'),
gr.Textbox(label='Severity Level'),
gr.Textbox(label='Weather Trend'),
gr.Markdown(label='Recommendations')
],
title='Wildfire Detection & Management Assistant',
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, projection, and get expert recommendations.'
)
if __name__ == '__main__':
interface.launch()