EmberDeepAI / app.py
AbdullahImran's picture
Update app.py
7600a0b verified
import os
import requests
import pandas as pd
import numpy as np
import joblib
import gradio as gr
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
from PIL import Image
# --- CONFIGURATION ---
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
"https://archive-api.open-meteo.com/v1/archive"
"?latitude={lat}&longitude={lon}"
"&start_date={start}&end_date={end}"
"&daily=temperature_2m_max,temperature_2m_min,"
"precipitation_sum,windspeed_10m_max,"
"relative_humidity_2m_max,relative_humidity_2m_min"
"&timezone=UTC"
)
# --- LOAD MODELS ---
def load_models():
# Fire detector (VGG16)
vgg_model = load_model(
'vgg16_focal_unfreeze_more.keras',
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
)
# Severity classifier (Xception)
def focal_loss_fixed(gamma=2., alpha=.25):
import tensorflow.keras.backend as K
def loss_fn(y_true, y_pred):
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
ce = -y_true * K.log(y_pred)
w = alpha * K.pow(1-y_pred, gamma)
return K.mean(w * ce, axis=-1)
return loss_fn
xce_model = load_model(
'severity_post_tta.keras',
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
)
# Ensemble and trend models
rf_model = joblib.load('ensemble_rf_model.pkl')
xgb_model = joblib.load('ensemble_xgb_model.pkl')
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
return vgg_model, xce_model, rf_model, xgb_model, lr_model
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
# --- RULES & TEMPLATES ---
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
task_rules = {
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
}
templates = {
'mild': (
"📌 **Immediate Monitoring:** Although fire intensity is low, assign lookouts to monitor hotspots every 30 minutes. Use handheld IR cameras to detect any hidden flare-ups.\n\n"
"📌 **Community Alert:** Send SMS alerts to nearby villages reminding them to stay vigilant. Provide clear instructions on how to report any smoke sightings.\n\n"
"📌 **Fuel Management:** Conduct targeted removal of leaf litter and dry underbrush within a 100 m radius to reduce the chance of flare-ups.\n\n"
"📌 **Preparedness Drills:** Hold a quick drill with ground crews to review communication protocols and ensure equipment (hoses, pumps) is ready.\n\n"
"📌 **Public Education:** Distribute flyers on safe fire-watch practices and set up a hotline for rapid reporting."
),
'moderate': (
"🚒 **Rapid Response:** Dispatch two engine crews and one aerial water-drop helicopter. Coordinate with the regional command center to stage retardant tanks nearby.\n\n"
"🏃‍♂️ **Evacuation Prep:** Pre-position evacuation buses at community centers. Issue voluntary evacuation notices to residents within 5 km downwind.\n\n"
"🛠 **Containment Lines:** Construct a 10 m fire break using both hand tools and bulldozers. Apply fire-retardant gel along the anticipated flank.\n\n"
"🌱 **Fuel Reduction:** Begin mechanical thinning of small trees and brush in high-risk zones adjacent to critical infrastructure.\n\n"
"📣 **Awareness Campaign:** Launch radio spots explaining what to do if fire approaches, including evacuation routes and shelter locations."
),
'severe': (
"✈️ **Full Suppression:** Mobilize two air tankers for retardant drops and four ground crews with heavy equipment. Integrate real-time satellite imagery for targeting.\n\n"
"🚨 **Mandatory Evacuation:** Issue immediate evacuation orders for all residents within a 10 km radius. Open three emergency shelters with medical staff on standby.\n\n"
"🔥 **Backfire Operations:** Conduct controlled backfires under supervision of senior incident commanders to remove fuel ahead of the main front.\n\n"
"🌳 **Post-Fire Rehabilitation:** Plan reforestation with fire-resistant native species; stabilize soil to prevent erosion in burn scar areas.\n\n"
"🗣 **Crisis Communication:** Hold daily press briefings and social media updates. Provide mental-health support hotlines for displaced families."
)
}
# --- PIPELINE FUNCTIONS ---
def detect_fire(img):
x = keras_image.img_to_array(img.resize((128,128)))[None]
x = vgg_preprocess(x)
prob = float(vgg_model.predict(x)[0][0])
return prob >= 0.5, prob
def classify_severity(img):
x = keras_image.img_to_array(img.resize((224,224)))[None]
x = xce_preprocess(x)
preds = xception_model.predict(x)
rf_p = rf_model.predict(preds)[0]
xgb_p = xgb_model.predict(preds)[0]
ensemble = int(round((rf_p + xgb_p)/2))
return target_map.get(ensemble, 'moderate')
def fetch_weather_trend(lat, lon):
end = datetime.utcnow()
start = end - timedelta(days=1)
url = API_URL.format(lat=lat, lon=lon,
start=start.strftime('%Y-%m-%d'),
end=end.strftime('%Y-%m-%d'))
df = pd.DataFrame(requests.get(url).json().get('daily', {}))
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
df[c] = pd.to_numeric(df.get(c,[]), errors='coerce')
df['precipitation'] = df['precipitation_sum'].fillna(0)
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
df['wind_speed'] = df['windspeed_10m_max']
df['fire_risk_score'] = (
0.4*(df['temperature']/55) +
0.2*(1-df['humidity']/100) +
0.3*(df['wind_speed']/60) +
0.1*(1-df['precipitation']/50)
)
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
trend_cl = lr_model.predict(feat)[0]
return trend_map.get(trend_cl, 'same')
def generate_recommendations(original_severity, weather_trend):
# determine projected severity
proj = task_rules[original_severity][weather_trend]
rec = templates[proj]
# proper multi-line header
header = f"""**Original:** {original_severity.title()}
**Trend:** {weather_trend.title()}
**Projected:** {proj.title()}\n\n"""
return header + rec
# --- GRADIO INTERFACE ---
def pipeline(image):
img = Image.fromarray(image).convert('RGB')
fire, prob = detect_fire(img)
if not fire:
return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
sev = classify_severity(img)
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
recs = generate_recommendations(sev, trend)
return f"Fire Detected (prob={prob:.2f})", sev.title(), trend, recs
interface = gr.Interface(
fn=pipeline,
inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
outputs=[
gr.Textbox(label='Fire Status'),
gr.Textbox(label='Severity Level'),
gr.Textbox(label='Weather Trend'),
gr.Markdown(label='Recommendations')
],
title='Wildfire Detection & Management Assistant',
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, projection, and get expert recommendations.'
)
if __name__ == '__main__':
interface.launch()