Spaces:
Sleeping
Sleeping
File size: 8,134 Bytes
04fa07a 2d71661 d4e30d8 04fa07a 8c9a116 04fa07a c347529 04fa07a 2d71661 04fa07a b725fc0 04fa07a b725fc0 c347529 efe2c93 7681b94 fe9a939 b7608ef b725fc0 fe9a939 7b96ae6 fe9a939 7b96ae6 fe9a939 7b96ae6 fe9a939 7681b94 04fa07a b725fc0 efe2c93 b725fc0 efe2c93 b725fc0 efe2c93 b725fc0 ec1da24 b725fc0 ec1da24 b725fc0 fe9a939 ec1da24 fe9a939 b725fc0 c1a8779 b725fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import os
import requests
import pandas as pd
import numpy as np
import joblib
import gradio as gr
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
from PIL import Image
# --- CONFIGURATION ---
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
"https://archive-api.open-meteo.com/v1/archive"
"?latitude={lat}&longitude={lon}"
"&start_date={start}&end_date={end}"
"&daily=temperature_2m_max,temperature_2m_min,"
"precipitation_sum,windspeed_10m_max,"
"relative_humidity_2m_max,relative_humidity_2m_min"
"&timezone=UTC"
)
# --- LOAD MODELS ---
def load_models():
# Fire detector (VGG16)
vgg_model = load_model(
'vgg16_focal_unfreeze_more.keras',
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
)
# Severity classifier (Xception)
def focal_loss_fixed(gamma=2., alpha=.25):
import tensorflow.keras.backend as K
def loss_fn(y_true, y_pred):
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
ce = -y_true * K.log(y_pred)
w = alpha * K.pow(1-y_pred, gamma)
return K.mean(w * ce, axis=-1)
return loss_fn
xce_model = load_model(
'severity_post_tta.keras',
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
)
# Ensemble and trend models
rf_model = joblib.load('ensemble_rf_model.pkl')
xgb_model = joblib.load('ensemble_xgb_model.pkl')
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
return vgg_model, xce_model, rf_model, xgb_model, lr_model
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
# --- RULES & TEMPLATES ---
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
task_rules = {
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
}
templates = {
'mild': (
"📌 **Immediate Monitoring:** Although fire intensity is low, assign lookouts to monitor hotspots every 30 minutes. Use handheld IR cameras to detect any hidden flare-ups.\n\n"
"📌 **Community Alert:** Send SMS alerts to nearby villages reminding them to stay vigilant. Provide clear instructions on how to report any smoke sightings.\n\n"
"📌 **Fuel Management:** Conduct targeted removal of leaf litter and dry underbrush within a 100 m radius to reduce the chance of flare-ups.\n\n"
"📌 **Preparedness Drills:** Hold a quick drill with ground crews to review communication protocols and ensure equipment (hoses, pumps) is ready.\n\n"
"📌 **Public Education:** Distribute flyers on safe fire-watch practices and set up a hotline for rapid reporting."
),
'moderate': (
"🚒 **Rapid Response:** Dispatch two engine crews and one aerial water-drop helicopter. Coordinate with the regional command center to stage retardant tanks nearby.\n\n"
"🏃♂️ **Evacuation Prep:** Pre-position evacuation buses at community centers. Issue voluntary evacuation notices to residents within 5 km downwind.\n\n"
"🛠 **Containment Lines:** Construct a 10 m fire break using both hand tools and bulldozers. Apply fire-retardant gel along the anticipated flank.\n\n"
"🌱 **Fuel Reduction:** Begin mechanical thinning of small trees and brush in high-risk zones adjacent to critical infrastructure.\n\n"
"📣 **Awareness Campaign:** Launch radio spots explaining what to do if fire approaches, including evacuation routes and shelter locations."
),
'severe': (
"✈️ **Full Suppression:** Mobilize two air tankers for retardant drops and four ground crews with heavy equipment. Integrate real-time satellite imagery for targeting.\n\n"
"🚨 **Mandatory Evacuation:** Issue immediate evacuation orders for all residents within a 10 km radius. Open three emergency shelters with medical staff on standby.\n\n"
"🔥 **Backfire Operations:** Conduct controlled backfires under supervision of senior incident commanders to remove fuel ahead of the main front.\n\n"
"🌳 **Post-Fire Rehabilitation:** Plan reforestation with fire-resistant native species; stabilize soil to prevent erosion in burn scar areas.\n\n"
"🗣 **Crisis Communication:** Hold daily press briefings and social media updates. Provide mental-health support hotlines for displaced families."
)
}
# --- PIPELINE FUNCTIONS ---
def detect_fire(img):
x = keras_image.img_to_array(img.resize((128,128)))[None]
x = vgg_preprocess(x)
prob = float(vgg_model.predict(x)[0][0])
return prob >= 0.5, prob
def classify_severity(img):
x = keras_image.img_to_array(img.resize((224,224)))[None]
x = xce_preprocess(x)
preds = xception_model.predict(x)
rf_p = rf_model.predict(preds)[0]
xgb_p = xgb_model.predict(preds)[0]
ensemble = int(round((rf_p + xgb_p)/2))
return target_map.get(ensemble, 'moderate')
def fetch_weather_trend(lat, lon):
end = datetime.utcnow()
start = end - timedelta(days=1)
url = API_URL.format(lat=lat, lon=lon,
start=start.strftime('%Y-%m-%d'),
end=end.strftime('%Y-%m-%d'))
df = pd.DataFrame(requests.get(url).json().get('daily', {}))
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
df[c] = pd.to_numeric(df.get(c,[]), errors='coerce')
df['precipitation'] = df['precipitation_sum'].fillna(0)
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
df['wind_speed'] = df['windspeed_10m_max']
df['fire_risk_score'] = (
0.4*(df['temperature']/55) +
0.2*(1-df['humidity']/100) +
0.3*(df['wind_speed']/60) +
0.1*(1-df['precipitation']/50)
)
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
trend_cl = lr_model.predict(feat)[0]
return trend_map.get(trend_cl, 'same')
def generate_recommendations(original_severity, weather_trend):
# determine projected severity
proj = task_rules[original_severity][weather_trend]
rec = templates[proj]
# proper multi-line header
header = f"""**Original:** {original_severity.title()}
**Trend:** {weather_trend.title()}
**Projected:** {proj.title()}\n\n"""
return header + rec
# --- GRADIO INTERFACE ---
def pipeline(image):
img = Image.fromarray(image).convert('RGB')
fire, prob = detect_fire(img)
if not fire:
return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
sev = classify_severity(img)
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
recs = generate_recommendations(sev, trend)
return f"Fire Detected (prob={prob:.2f})", sev.title(), trend, recs
interface = gr.Interface(
fn=pipeline,
inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
outputs=[
gr.Textbox(label='Fire Status'),
gr.Textbox(label='Severity Level'),
gr.Textbox(label='Weather Trend'),
gr.Markdown(label='Recommendations')
],
title='Wildfire Detection & Management Assistant',
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, projection, and get expert recommendations.'
)
if __name__ == '__main__':
interface.launch() |