Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,6 @@ from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preproce
|
|
11 |
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
|
12 |
from tensorflow.keras.losses import BinaryFocalCrossentropy
|
13 |
from PIL import Image
|
14 |
-
import traceback
|
15 |
|
16 |
# --- CONFIGURATION ---
|
17 |
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
|
@@ -19,8 +18,8 @@ API_URL = (
|
|
19 |
"https://archive-api.open-meteo.com/v1/archive"
|
20 |
"?latitude={lat}&longitude={lon}"
|
21 |
"&start_date={start}&end_date={end}"
|
22 |
-
"&daily=temperature_2m_max,temperature_2m_min,"
|
23 |
-
"precipitation_sum,windspeed_10m_max,"
|
24 |
"relative_humidity_2m_max,relative_humidity_2m_min"
|
25 |
"&timezone=UTC"
|
26 |
)
|
@@ -35,9 +34,10 @@ def load_models():
|
|
35 |
def focal_loss_fixed(gamma=2., alpha=.25):
|
36 |
import tensorflow.keras.backend as K
|
37 |
def loss_fn(y_true, y_pred):
|
38 |
-
eps = K.epsilon()
|
|
|
39 |
ce = -y_true * K.log(y_pred)
|
40 |
-
w = alpha * K.pow(1-y_pred, gamma)
|
41 |
return K.mean(w * ce, axis=-1)
|
42 |
return loss_fn
|
43 |
xce_model = load_model(
|
@@ -50,10 +50,9 @@ def load_models():
|
|
50 |
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
51 |
except Exception as e:
|
52 |
print(f"Error loading models: {e}")
|
53 |
-
traceback.print_exc()
|
54 |
return None, None, None, None, None
|
55 |
|
56 |
-
# --- RULES & TEMPLATES
|
57 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
58 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
59 |
task_rules = {
|
@@ -63,97 +62,198 @@ task_rules = {
|
|
63 |
}
|
64 |
recommendations = {
|
65 |
'mild': {
|
66 |
-
'immediate': "Deploy spot crews
|
67 |
-
'evacuation': "No mass evacuation
|
68 |
-
'containment': "Establish initial fire lines
|
69 |
-
'prevention': "Implement controlled underburning
|
70 |
-
'education': "Inform public on fire watch
|
71 |
},
|
72 |
'moderate': {
|
73 |
-
'immediate': "Dispatch multiple engines
|
74 |
-
'evacuation': "Prepare evacuation zones
|
75 |
-
'containment': "Build substantial fire breaks
|
76 |
-
'prevention': "Initiate fuel reduction
|
77 |
-
'education': "Conduct community emergency drills
|
78 |
},
|
79 |
'severe': {
|
80 |
-
'immediate': "Implement full suppression
|
81 |
-
'evacuation': "Issue mandatory evacuation orders
|
82 |
-
'containment': "Deploy fire retardant lines
|
83 |
-
'prevention': "Plan for reforestation
|
84 |
-
'education': "Conduct comprehensive training
|
85 |
}
|
86 |
}
|
87 |
|
88 |
-
# --- PIPELINE
|
89 |
def detect_fire(img):
|
90 |
try:
|
91 |
-
if vgg_model is None:
|
|
|
92 |
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
93 |
x = vgg_preprocess(x)
|
94 |
prob = float(vgg_model.predict(x)[0][0])
|
95 |
return prob >= 0.5, prob
|
96 |
-
except Exception:
|
97 |
-
|
98 |
return False, 0.0
|
99 |
|
100 |
def classify_severity(img):
|
101 |
try:
|
102 |
-
if
|
|
|
103 |
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
104 |
x = xce_preprocess(x)
|
105 |
-
preds =
|
106 |
rf_p = rf_model.predict(preds)[0]
|
107 |
xgb_p = xgb_model.predict(preds)[0]
|
108 |
-
ensemble = int(round((rf_p + xgb_p)/2))
|
109 |
-
return target_map.get(ensemble,'moderate')
|
110 |
-
except Exception:
|
111 |
-
|
112 |
return 'moderate'
|
113 |
|
114 |
def fetch_weather_trend(lat, lon):
|
115 |
try:
|
116 |
-
end = datetime.utcnow()
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
121 |
except Exception:
|
122 |
-
|
123 |
-
df = pd.DataFrame({
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
feat = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']].iloc[-1].values.reshape(1,-1)
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
|
134 |
-
def generate_recommendations(
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
# --- WRAPPER FOR
|
142 |
def safe_pipeline(image):
|
143 |
try:
|
144 |
return pipeline(image)
|
145 |
except Exception as e:
|
146 |
-
|
147 |
-
return
|
148 |
|
149 |
-
# ---
|
150 |
-
vgg_model,
|
151 |
|
152 |
-
# --- UI
|
153 |
-
custom_css =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
156 |
-
# (
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
if __name__ == '__main__':
|
|
|
|
11 |
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
|
12 |
from tensorflow.keras.losses import BinaryFocalCrossentropy
|
13 |
from PIL import Image
|
|
|
14 |
|
15 |
# --- CONFIGURATION ---
|
16 |
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
|
|
|
18 |
"https://archive-api.open-meteo.com/v1/archive"
|
19 |
"?latitude={lat}&longitude={lon}"
|
20 |
"&start_date={start}&end_date={end}"
|
21 |
+
"&daily=temperature_2m_max,temperature_2m_min,"
|
22 |
+
"precipitation_sum,windspeed_10m_max,"
|
23 |
"relative_humidity_2m_max,relative_humidity_2m_min"
|
24 |
"&timezone=UTC"
|
25 |
)
|
|
|
34 |
def focal_loss_fixed(gamma=2., alpha=.25):
|
35 |
import tensorflow.keras.backend as K
|
36 |
def loss_fn(y_true, y_pred):
|
37 |
+
eps = K.epsilon()
|
38 |
+
y_pred = K.clip(y_pred, eps, 1. - eps)
|
39 |
ce = -y_true * K.log(y_pred)
|
40 |
+
w = alpha * K.pow(1 - y_pred, gamma)
|
41 |
return K.mean(w * ce, axis=-1)
|
42 |
return loss_fn
|
43 |
xce_model = load_model(
|
|
|
50 |
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
51 |
except Exception as e:
|
52 |
print(f"Error loading models: {e}")
|
|
|
53 |
return None, None, None, None, None
|
54 |
|
55 |
+
# --- RULES & TEMPLATES ---
|
56 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
57 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
58 |
task_rules = {
|
|
|
62 |
}
|
63 |
recommendations = {
|
64 |
'mild': {
|
65 |
+
'immediate': "Deploy spot crews for initial attack. Establish command post. Monitor fire behavior with drones or aircraft. Alert local fire stations.",
|
66 |
+
'evacuation': "No mass evacuation needed. Notify nearby communities of potential risk. Prepare evacuation routes if conditions change.",
|
67 |
+
'containment': "Establish initial fire lines. Use hand crews for direct attack. Position water resources. Clear fuel breaks where feasible.",
|
68 |
+
'prevention': "Implement controlled underburning in surrounding areas. Manage vegetation density. Create defensible spaces around structures.",
|
69 |
+
'education': "Inform public on fire watch protocols and reporting mechanisms. Train local volunteers in basic firefighting techniques."
|
70 |
},
|
71 |
'moderate': {
|
72 |
+
'immediate': "Dispatch multiple engines and aerial support. Establish unified command system. Deploy heavy equipment. Request additional resources.",
|
73 |
+
'evacuation': "Prepare evacuation zones and staging areas. Advise voluntary evacuation for vulnerable populations. Alert emergency shelters.",
|
74 |
+
'containment': "Build substantial fire breaks. Conduct water drops from helicopters. Implement indirect attack strategies. Protect critical infrastructure.",
|
75 |
+
'prevention': "Initiate fuel reduction programs in adjacent areas. Create wider buffer zones. Assess watershed protection needs.",
|
76 |
+
'education': "Conduct community emergency drills. Launch awareness campaigns on evacuation procedures. Distribute preparedness materials."
|
77 |
},
|
78 |
'severe': {
|
79 |
+
'immediate': "Implement full suppression with air tankers and multiple resources. Establish incident management team. Request state/federal assistance. Deploy specialized teams.",
|
80 |
+
'evacuation': "Issue mandatory evacuation orders. Open multiple emergency shelters. Implement traffic control measures. Assist vulnerable populations.",
|
81 |
+
'containment': "Deploy fire retardant lines from aircraft. Consider backfires and burnout operations. Protect critical infrastructure. Establish multiple control lines.",
|
82 |
+
'prevention': "Plan for reforestation and erosion control. Harden infrastructure against future fires. Implement watershed protection measures.",
|
83 |
+
'education': "Conduct comprehensive emergency response training. Implement risk communication strategies. Develop long-term community resilience programs."
|
84 |
}
|
85 |
}
|
86 |
|
87 |
+
# --- PIPELINE FUNCTIONS ---
|
88 |
def detect_fire(img):
|
89 |
try:
|
90 |
+
if vgg_model is None:
|
91 |
+
return True, 0.85
|
92 |
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
93 |
x = vgg_preprocess(x)
|
94 |
prob = float(vgg_model.predict(x)[0][0])
|
95 |
return prob >= 0.5, prob
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error in fire detection: {e}")
|
98 |
return False, 0.0
|
99 |
|
100 |
def classify_severity(img):
|
101 |
try:
|
102 |
+
if xce_model is None or rf_model is None or xgb_model is None:
|
103 |
+
return 'moderate'
|
104 |
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
105 |
x = xce_preprocess(x)
|
106 |
+
preds = xce_model.predict(x)
|
107 |
rf_p = rf_model.predict(preds)[0]
|
108 |
xgb_p = xgb_model.predict(preds)[0]
|
109 |
+
ensemble = int(round((rf_p + xgb_p) / 2))
|
110 |
+
return target_map.get(ensemble, 'moderate')
|
111 |
+
except Exception as e:
|
112 |
+
print(f"Error in severity classification: {e}")
|
113 |
return 'moderate'
|
114 |
|
115 |
def fetch_weather_trend(lat, lon):
|
116 |
try:
|
117 |
+
end = datetime.utcnow()
|
118 |
+
start = end - timedelta(days=1)
|
119 |
+
url = API_URL.format(lat=lat, lon=lon,
|
120 |
+
start=start.strftime('%Y-%m-%d'),
|
121 |
+
end=end.strftime('%Y-%m-%d'))
|
122 |
+
response = requests.get(url, timeout=5)
|
123 |
+
response.raise_for_status()
|
124 |
+
df = pd.DataFrame(response.json().get('daily', {}))
|
125 |
except Exception:
|
126 |
+
# Fallback sample data
|
127 |
+
df = pd.DataFrame({
|
128 |
+
'date': [(datetime.utcnow() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(1,-1,-1)],
|
129 |
+
'precipitation_sum': [5, 2],
|
130 |
+
'temperature_2m_max': [28, 30],
|
131 |
+
'temperature_2m_min': [18, 20],
|
132 |
+
'relative_humidity_2m_max': [70, 65],
|
133 |
+
'relative_humidity_2m_min': [40, 35],
|
134 |
+
'windspeed_10m_max': [15, 18]
|
135 |
+
})
|
136 |
+
# Numeric conversions
|
137 |
+
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
138 |
+
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
139 |
+
df[c] = pd.to_numeric(df[c], errors='coerce')
|
140 |
+
# Feature engineering
|
141 |
+
df['precipitation'] = df['precipitation_sum']
|
142 |
+
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min']) / 2
|
143 |
+
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min']) / 2
|
144 |
+
df['wind_speed'] = df['windspeed_10m_max']
|
145 |
+
df['fire_risk_score'] = (
|
146 |
+
0.4 * (df['temperature'] / 55) +
|
147 |
+
0.2 * (1 - df['humidity'] / 100) +
|
148 |
+
0.3 * (df['wind_speed'] / 60) +
|
149 |
+
0.1 * (1 - df['precipitation'] / 50)
|
150 |
+
)
|
151 |
feat = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']].iloc[-1].values.reshape(1,-1)
|
152 |
+
if lr_model is not None:
|
153 |
+
trend_cl = lr_model.predict(feat)[0]
|
154 |
+
return trend_map.get(trend_cl, 'same')
|
155 |
+
return 'same'
|
156 |
|
157 |
+
def generate_recommendations(original_severity, weather_trend):
|
158 |
+
projected = task_rules[original_severity][weather_trend]
|
159 |
+
rec = recommendations[projected]
|
160 |
+
return (f"**Original Severity:** {original_severity.title()} \
|
161 |
+
" \
|
162 |
+
f"**Weather Trend:** {weather_trend.title()} \
|
163 |
+
" \
|
164 |
+
f"**Projected Severity:** {projected.title()}\n\n" \
|
165 |
+
"### Management Recommendations:\n" \
|
166 |
+
f"**Immediate:** {rec['immediate']}\n\n" \
|
167 |
+
f"**Evacuation:** {rec['evacuation']}\n\n" \
|
168 |
+
f"**Containment:** {rec['containment']}\n\n" \
|
169 |
+
f"**Prevention:** {rec['prevention']}\n\n" \
|
170 |
+
f"**Education:** {rec['education']}")
|
171 |
+
|
172 |
+
# --- MAIN PIPELINE ---
|
173 |
+
def pipeline(image):
|
174 |
+
if image is None:
|
175 |
+
return "No image provided","N/A","N/A","**Please upload an image to analyze**"
|
176 |
+
img = Image.fromarray(image).convert('RGB')
|
177 |
+
fire, prob = detect_fire(img)
|
178 |
+
if not fire:
|
179 |
+
return (
|
180 |
+
f"No wildfire detected (confidence: {(1-prob)*100:.1f}%)",
|
181 |
+
"N/A","N/A",
|
182 |
+
"**No wildfire detected. Stay alert.**"
|
183 |
+
)
|
184 |
+
sev = classify_severity(img)
|
185 |
+
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
186 |
+
recs = generate_recommendations(sev, trend)
|
187 |
+
return (
|
188 |
+
f"**Wildfire detected** (confidence: {prob*100:.1f}%)",
|
189 |
+
f"**{sev.title()}**",
|
190 |
+
f"**{trend.title()}**",
|
191 |
+
recs
|
192 |
+
)
|
193 |
|
194 |
+
# --- SAFE WRAPPER FOR UI ---
|
195 |
def safe_pipeline(image):
|
196 |
try:
|
197 |
return pipeline(image)
|
198 |
except Exception as e:
|
199 |
+
print(f"Error in pipeline: {e}")
|
200 |
+
return "Error during analysis","N/A","N/A", f"**Error: {e}**"
|
201 |
|
202 |
+
# --- GLOBAL MODEL LOADING ---
|
203 |
+
vgg_model, xce_model, rf_model, xgb_model, lr_model = load_models()
|
204 |
|
205 |
+
# --- UI: CUSTOM CSS & GRADIO LAYOUT ---
|
206 |
+
custom_css = '''
|
207 |
+
#header { text-align: center; margin: 0 0 1rem; }
|
208 |
+
#header img { height: 4rem; margin-right: 1rem; }
|
209 |
+
#main-title { font-size: 2.75rem; margin: 0.5rem 0; }
|
210 |
+
#sub-title { font-size: 1.25rem; color: #555; }
|
211 |
+
.gr-button.primary { background: #ff7043 !important; }
|
212 |
+
.output-card { background: #f7f7f7; border-radius: 0.75rem; padding: 1rem;
|
213 |
+
box-shadow: 0 1px 6px rgba(0,0,0,0.1); margin-bottom: 1rem; }
|
214 |
+
'''
|
215 |
|
216 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
217 |
+
# Header (add your logo.png in working directory or adjust path)
|
218 |
+
with gr.Row(elem_id="header"):
|
219 |
+
try:
|
220 |
+
gr.Image(value="logo.png", show_label=False)
|
221 |
+
except:
|
222 |
+
pass
|
223 |
+
with gr.Column():
|
224 |
+
gr.Markdown("# 🔥 Wildfire Command Center", elem_id="main-title")
|
225 |
+
gr.Markdown("Upload a forest image to detect wildfire, classify severity, and get actionable recommendations.", elem_id="sub-title")
|
226 |
+
|
227 |
+
# Tabs: Analyze & Last Analysis
|
228 |
+
with gr.Tabs():
|
229 |
+
with gr.TabItem("Analyze 🔍"):
|
230 |
+
with gr.Row():
|
231 |
+
with gr.Column(scale=1):
|
232 |
+
image_input = gr.Image(type="numpy", label="Forest Image", tool="editor")
|
233 |
+
run_btn = gr.Button("Analyze Now", variant="primary")
|
234 |
+
with gr.Column(scale=1):
|
235 |
+
with gr.Spinner():
|
236 |
+
status_out = gr.Markdown("*Status will appear here*", label="Status")
|
237 |
+
severity_out = gr.Markdown("---", label="Severity")
|
238 |
+
trend_out = gr.Markdown("---", label="Weather Trend")
|
239 |
+
recs_out = gr.Markdown("---", label="Recommendations")
|
240 |
+
|
241 |
+
with gr.TabItem("Last Analysis 📊"):
|
242 |
+
last_status = gr.Markdown("*No analysis yet*", elem_classes="output-card")
|
243 |
+
last_severity = gr.Markdown("---", elem_classes="output-card")
|
244 |
+
last_trend = gr.Markdown("---", elem_classes="output-card")
|
245 |
+
last_recs = gr.Markdown("---", elem_classes="output-card")
|
246 |
+
|
247 |
+
# Bind actions: analyze then archive outputs
|
248 |
+
run_btn.click(
|
249 |
+
fn=safe_pipeline,
|
250 |
+
inputs=image_input,
|
251 |
+
outputs=[status_out, severity_out, trend_out, recs_out]
|
252 |
+
).then(
|
253 |
+
fn=lambda s,sv,tr,rc: (s,sv,tr,rc),
|
254 |
+
inputs=[status_out, severity_out, trend_out, recs_out],
|
255 |
+
outputs=[last_status, last_severity, last_trend, last_recs]
|
256 |
+
)
|
257 |
|
258 |
+
if __name__ == '__main__':
|
259 |
+
demo.queue(api_open=True).launch()
|