TriCast-AI / app.py
AbdullahImran's picture
Update app.py
a235e07 verified
raw
history blame
11.5 kB
import gradio as gr
import pandas as pd
import numpy as np
import joblib
import xgboost as xgb
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import seaborn as sns
import io
# Load models & scalers
xgb_clf = xgb.XGBClassifier()
xgb_clf.load_model("xgb_model.json")
xgb_reg = joblib.load("xgb_pipeline_model.pkl")
scaler_X = joblib.load("scaler_X.pkl")
scaler_y = joblib.load("scaler_y.pkl")
lstm_model = load_model("lstm_revenue_model.keras")
# Set matplotlib style for dark theme compatibility
plt.style.use('dark_background')
def process_csv_file(file):
"""Process uploaded CSV file and return DataFrame"""
if file is None:
return None
try:
df = pd.read_csv(file.name)
return df
except Exception as e:
gr.Warning(f"Error reading CSV file: {str(e)}")
return None
def classify_fn(file):
"""Bankruptcy classification from CSV file"""
if file is None:
return "Please upload a CSV file", None
df = process_csv_file(file)
if df is None:
return "Error processing file", None
try:
# Use all rows in the CSV for prediction
preds = xgb_clf.predict(df)
probs = xgb_clf.predict_proba(df)
# Create visualization
fig, ax = plt.subplots(figsize=(10, 6), facecolor='#1f1f1f')
ax.set_facecolor('#1f1f1f')
if len(preds) == 1:
# Single company prediction
bars = ax.bar(['No Bankruptcy', 'Bankruptcy'], probs[0],
color=['#4CAF50', '#F44336'], alpha=0.8)
ax.set_ylim(0, 1)
ax.set_title('Bankruptcy Probability', color='white', fontsize=14)
ax.set_ylabel('Probability', color='white')
result_text = f"Prediction: {'Bankruptcy Risk' if preds[0] == 1 else 'No Bankruptcy Risk'}\nConfidence: {max(probs[0]):.2%}"
else:
# Multiple companies
bankruptcy_count = np.sum(preds)
safe_count = len(preds) - bankruptcy_count
bars = ax.bar(['Safe Companies', 'At Risk Companies'],
[safe_count, bankruptcy_count],
color=['#4CAF50', '#F44336'], alpha=0.8)
ax.set_title(f'Bankruptcy Analysis for {len(preds)} Companies', color='white', fontsize=14)
ax.set_ylabel('Number of Companies', color='white')
result_text = f"Total Companies: {len(preds)}\nSafe: {safe_count}\nAt Risk: {bankruptcy_count}"
ax.tick_params(colors='white')
ax.spines['bottom'].set_color('white')
ax.spines['left'].set_color('white')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.tight_layout()
return result_text, fig
except Exception as e:
return f"Error in prediction: {str(e)}", None
def regress_fn(file):
"""Anomaly detection from CSV file"""
if file is None:
return "Please upload a CSV file", None
df = process_csv_file(file)
if df is None:
return "Error processing file", None
try:
preds = xgb_reg.predict(df)
# Create visualization
fig, ax = plt.subplots(figsize=(10, 6), facecolor='#1f1f1f')
ax.set_facecolor('#1f1f1f')
sns.histplot(preds, bins=20, kde=True, ax=ax, color='#00BCD4', alpha=0.7)
ax.set_title('Anomaly Score Distribution', color='white', fontsize=14)
ax.set_xlabel('Anomaly Score', color='white')
ax.set_ylabel('Frequency', color='white')
ax.tick_params(colors='white')
ax.spines['bottom'].set_color('white')
ax.spines['left'].set_color('white')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.tight_layout()
# Summary statistics
avg_score = np.mean(preds)
high_risk_count = np.sum(preds > np.percentile(preds, 75))
result_text = f"Average Anomaly Score: {avg_score:.3f}\nHigh Risk Companies: {high_risk_count}/{len(preds)}\nScore Range: {np.min(preds):.3f} - {np.max(preds):.3f}"
return result_text, fig
except Exception as e:
return f"Error in prediction: {str(e)}", None
def lstm_fn(file):
"""LSTM revenue forecasting from CSV file"""
if file is None:
return "Please upload a CSV file", None
df = process_csv_file(file)
if df is None:
return "Error processing file", None
try:
# Expect CSV with revenue columns or a single row with 10 revenue values
if df.shape[1] < 10:
return "CSV must contain at least 10 revenue columns for quarterly data", None
# Take first row and first 10 columns as revenue sequence
vals = df.iloc[0, :10].values.astype(float).reshape(1, -1)
# Scale and predict
vals_s = scaler_X.transform(vals).reshape((1, vals.shape[1], 1))
pred_s = lstm_model.predict(vals_s)
pred = scaler_y.inverse_transform(pred_s)[0, 0]
# Create visualization
fig, ax = plt.subplots(figsize=(12, 6), facecolor='#1f1f1f')
ax.set_facecolor('#1f1f1f')
quarters = [f'Q{i+1}' for i in range(10)]
ax.plot(quarters, vals.flatten(), marker='o', linewidth=2,
markersize=8, color='#2196F3', label='Historical Revenue')
ax.plot('Q11', pred, marker='X', markersize=15, color='#FF5722',
label=f'Predicted Q11: ${pred:,.0f}')
ax.set_xlabel('Quarter', color='white')
ax.set_ylabel('Revenue ($)', color='white')
ax.set_title('Revenue Forecast - Next Quarter Prediction', color='white', fontsize=14)
ax.legend(facecolor='#2f2f2f', edgecolor='white', labelcolor='white')
ax.tick_params(colors='white')
ax.spines['bottom'].set_color('white')
ax.spines['left'].set_color('white')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.grid(True, alpha=0.3, color='white')
plt.xticks(rotation=45)
plt.tight_layout()
# Calculate growth rate
last_revenue = vals.flatten()[-1]
growth_rate = ((pred - last_revenue) / last_revenue) * 100
result_text = f"Predicted Q11 Revenue: ${pred:,.0f}\nGrowth from Q10: {growth_rate:+.1f}%"
return result_text, fig
except Exception as e:
return f"Error in prediction: {str(e)}", None
# Custom CSS for proper dark mode support
custom_css = """
/* Dark theme for the entire interface */
.gradio-container {
background-color: #1a1a1a !important;
color: #ffffff !important;
}
.gr-box {
background-color: #2d2d2d !important;
border: 1px solid #404040 !important;
}
.gr-form {
background-color: #2d2d2d !important;
}
.gr-panel {
background-color: #2d2d2d !important;
border: 1px solid #404040 !important;
}
.gr-button {
background-color: #0066cc !important;
color: white !important;
border: none !important;
}
.gr-button:hover {
background-color: #0052a3 !important;
}
.gr-input, .gr-textbox {
background-color: #2d2d2d !important;
border: 1px solid #404040 !important;
color: #ffffff !important;
}
.gr-upload {
background-color: #2d2d2d !important;
border: 2px dashed #404040 !important;
color: #ffffff !important;
}
.gr-file {
background-color: #2d2d2d !important;
color: #ffffff !important;
}
/* Tab styling */
.gr-tab-nav {
background-color: #2d2d2d !important;
border-bottom: 1px solid #404040 !important;
}
.gr-tab-nav button {
background-color: transparent !important;
color: #ffffff !important;
border: none !important;
}
.gr-tab-nav button.selected {
background-color: #0066cc !important;
color: white !important;
}
/* Text and markdown */
.gr-markdown {
color: #ffffff !important;
}
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {
color: #ffffff !important;
}
/* Ensure plot backgrounds work with dark theme */
.gr-plot {
background-color: #1f1f1f !important;
}
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base(), title="TriCast AI") as demo:
gr.Markdown("""
# πŸš€ TriCast AI
### Advanced Financial Intelligence Platform
Upload your company's financial data as a CSV file to get comprehensive AI-powered insights across three key areas.
""")
gr.Markdown("""
**πŸ“ CSV File Format Guidelines:**
- **Bankruptcy & Anomaly Detection**: Include financial metrics as columns (revenue, debt, assets, etc.)
- **Revenue Forecasting**: First 10 columns should contain quarterly revenue data
- Each row represents one company's data
""")
with gr.Tab("🏦 Bankruptcy Risk Assessment"):
gr.Markdown("**Upload CSV with company financial data to assess bankruptcy risk**")
with gr.Row():
with gr.Column():
file1 = gr.File(label="Upload CSV File", file_types=[".csv"])
classify_btn = gr.Button("πŸ” Analyze Bankruptcy Risk", variant="primary")
with gr.Column():
out1 = gr.Textbox(label="Analysis Results", lines=4)
plt1 = gr.Plot(label="Risk Visualization")
classify_btn.click(fn=classify_fn, inputs=file1, outputs=[out1, plt1])
with gr.Tab("πŸ“Š Anomaly Detection"):
gr.Markdown("**Upload CSV with company financial data to detect anomalies**")
with gr.Row():
with gr.Column():
file2 = gr.File(label="Upload CSV File", file_types=[".csv"])
regress_btn = gr.Button("πŸ”Ž Detect Anomalies", variant="primary")
with gr.Column():
out2 = gr.Textbox(label="Anomaly Analysis", lines=4)
plt2 = gr.Plot(label="Score Distribution")
regress_btn.click(fn=regress_fn, inputs=file2, outputs=[out2, plt2])
with gr.Tab("πŸ“ˆ Revenue Forecasting"):
gr.Markdown("**Upload CSV with quarterly revenue data (10 quarters) to forecast next quarter**")
with gr.Row():
with gr.Column():
file3 = gr.File(label="Upload CSV File", file_types=[".csv"])
forecast_btn = gr.Button("πŸ“Š Forecast Revenue", variant="primary")
with gr.Column():
out3 = gr.Textbox(label="Forecast Results", lines=4)
plt3 = gr.Plot(label="Revenue Trend & Prediction")
forecast_btn.click(fn=lstm_fn, inputs=file3, outputs=[out3, plt3])
with gr.Tab("πŸ“‹ Sample Data Format"):
gr.Markdown("""
### Sample CSV Formats:
**For Bankruptcy & Anomaly Detection:**
```
company_name,total_assets,total_liabilities,revenue,debt_ratio,current_ratio
Company A,1000000,500000,800000,0.5,2.1
Company B,2000000,1800000,600000,0.9,0.8
```
**For Revenue Forecasting:**
```
q1_revenue,q2_revenue,q3_revenue,q4_revenue,q5_revenue,q6_revenue,q7_revenue,q8_revenue,q9_revenue,q10_revenue
100000,120000,110000,130000,125000,140000,135000,150000,145000,160000
```
""")
gr.Markdown("---")
gr.Markdown("*TriCast AI - Powered by Advanced Machine Learning | Industry, Innovation and Infrastructure*")
if __name__ == "__main__":
demo.launch()