File size: 7,814 Bytes
edc611c
ac0e804
edc611c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac0e804
edc611c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import streamlit as st
import google.generativeai as genai
from dotenv import load_dotenv
from PIL import Image
import pandas as pd
import numpy as np
from typing import Dict, Any, List

# Load environment variables
load_dotenv()

# Configure Google Generative AI
genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))

# Page Configuration
st.set_page_config(
    page_title="Advanced Fake News Detector πŸ•΅οΈβ€β™€οΈ",
    page_icon="🚨",
    layout="wide"
)

# Custom CSS
st.markdown("""
<style>
.main-container {
    background-color: #f0f2f6;
    padding: 2rem;
    border-radius: 15px;
}
.analysis-box {
    background-color: white;
    border-radius: 10px;
    padding: 1.5rem;
    box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.stButton>button {
    background-color: #4CAF50;
    color: white;
    font-weight: bold;
    border: none;
    padding: 10px 20px;
    border-radius: 5px;
    transition: all 0.3s ease;
}
.stButton>button:hover {
    background-color: #45a049;
    transform: scale(1.05);
}
</style>
""", unsafe_allow_html=True)

class FakeNewsDetector:
    def __init__(self):
        """Initialize the Fake News Detection system"""
        self.model = genai.GenerativeModel('gemini-2.0-flash')
    
    def analyze_article(self, article_text: str) -> Dict[str, Any]:
        """
        Analyze the article using Gemini AI
        
        Args:
            article_text (str): Full text of the article
        
        Returns:
            Dict containing analysis results
        """
        prompt = f"""Comprehensive Fake News Analysis:

Article Text:
{article_text}

Provide a detailed analysis with:
1. Fake News Probability (0-100%)
2. Credibility Score (0-10)
3. Key Red Flags
4. Verification Recommendations
5. Potential Bias Indicators
6. Source Reliability Assessment

Format response as a structured JSON."""

        try:
            response = self.model.generate_content(prompt)
            return self._parse_analysis(response.text)
        except Exception as e:
            st.error(f"Analysis Error: {e}")
            return {}
    
    def _parse_analysis(self, analysis_text: str) -> Dict[str, Any]:
        """
        Parse the AI-generated analysis into a structured format
        
        Args:
            analysis_text (str): Raw analysis text
        
        Returns:
            Parsed analysis dictionary
        """
        try:
            # Basic parsing logic (can be enhanced)
            return {
                'fake_news_probability': self._extract_percentage(analysis_text),
                'credibility_score': self._extract_score(analysis_text),
                'red_flags': self._extract_red_flags(analysis_text),
                'verification_steps': self._extract_verification_steps(analysis_text),
                'bias_indicators': self._extract_bias_indicators(analysis_text),
                'source_reliability': self._extract_source_reliability(analysis_text)
            }
        except Exception as e:
            st.warning(f"Parsing Error: {e}")
            return {}
    
    def _extract_percentage(self, text: str) -> float:
        """Extract fake news probability percentage"""
        import re
        match = re.search(r'(\d+(?:\.\d+)?)\s*%', text)
        return float(match.group(1)) if match else 50.0
    
    def _extract_score(self, text: str) -> float:
        """Extract credibility score"""
        import re
        match = re.search(r'Credibility Score[:\s]*(\d+(?:\.\d+)?)', text)
        return float(match.group(1)) if match else 5.0
    
    def _extract_red_flags(self, text: str) -> List[str]:
        """Extract red flags from the analysis"""
        import re
        flags = re.findall(r'Red Flags?[:\s]*([^\n]+)', text, re.IGNORECASE)
        return flags[:3] if flags else ["No specific red flags identified"]
    
    def _extract_verification_steps(self, text: str) -> List[str]:
        """Extract verification recommendations"""
        import re
        steps = re.findall(r'Verification[:\s]*([^\n]+)', text, re.IGNORECASE)
        return steps[:3] if steps else ["Conduct independent research"]
    
    def _extract_bias_indicators(self, text: str) -> List[str]:
        """Extract potential bias indicators"""
        import re
        biases = re.findall(r'Bias[:\s]*([^\n]+)', text, re.IGNORECASE)
        return biases[:3] if biases else ["No clear bias detected"]
    
    def _extract_source_reliability(self, text: str) -> str:
        """Extract source reliability assessment"""
        import re
        match = re.search(r'Source Reliability[:\s]*([^\n]+)', text, re.IGNORECASE)
        return match.group(1) if match else "Reliability not conclusively determined"

def main():
    st.title("🚨 Advanced Fake News Detector")
    st.markdown("Powered by Google's Gemini 2.0 Flash AI")
    
    # Sidebar Configuration
    st.sidebar.header("πŸ› οΈ Detection Settings")
    confidence_threshold = st.sidebar.slider(
        "Confidence Threshold", 
        min_value=0.0, 
        max_value=1.0, 
        value=0.7, 
        step=0.05
    )
    
    # Article Input
    st.header("πŸ“ Article Analysis")
    article_text = st.text_area(
        "Paste the full article text", 
        height=300, 
        help="Copy and paste the complete article for comprehensive analysis"
    )
    
    # Image Upload (Optional)
    st.header("πŸ–ΌοΈ Article Evidence")
    uploaded_image = st.file_uploader(
        "Upload supporting/source image", 
        type=['png', 'jpg', 'jpeg'],
        help="Optional: Upload an image related to the article for additional context"
    )
    
    # Analyze Button
    if st.button("πŸ” Detect Fake News", key="analyze_btn"):
        if not article_text:
            st.error("Please provide an article to analyze.")
            return
        
        # Initialize Detector
        detector = FakeNewsDetector()
        
        # Perform Analysis
        with st.spinner('Analyzing article...'):
            analysis = detector.analyze_article(article_text)
        
        # Display Results
        if analysis:
            st.subheader("πŸ”¬ Detailed Analysis")
            
            # Credibility Visualization
            col1, col2, col3 = st.columns(3)
            
            with col1:
                st.metric(
                    "Fake News Probability", 
                    f"{analysis.get('fake_news_probability', 50):.2f}%"
                )
            
            with col2:
                st.metric(
                    "Credibility Score", 
                    f"{analysis.get('credibility_score', 5):.2f}/10"
                )
            
            with col3:
                st.metric(
                    "Risk Level", 
                    "High" if analysis.get('fake_news_probability', 50) > 50 else "Low"
                )
            
            # Detailed Insights
            st.subheader("🚩 Red Flags")
            for flag in analysis.get('red_flags', []):
                st.warning(flag)
            
            st.subheader("πŸ•΅οΈ Verification Steps")
            for step in analysis.get('verification_steps', []):
                st.info(step)
            
            # Image Analysis (if uploaded)
            if uploaded_image:
                image = Image.open(uploaded_image)
                st.subheader("πŸ“Έ Uploaded Image")
                st.image(image, caption="Article Supporting Image", use_column_width=True)
        
        # Final Recommendation
        st.markdown("---")
        st.markdown("""
        ### πŸ€” How to Interpret Results
        - **Low Probability**: Article seems credible
        - **High Probability**: Exercise caution, verify sources
        - **Always cross-reference with multiple sources**
        """)

if __name__ == "__main__":
    main()