Spaces:
Running
on
Zero
Running
on
Zero
AbstractPhil
commited on
Commit
·
a272f29
1
Parent(s):
73c138b
yes
Browse files
app.py
CHANGED
@@ -31,66 +31,14 @@ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, toke
|
|
31 |
if tokenizer.pad_token_id is None:
|
32 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
33 |
|
34 |
-
# -----------------------
|
35 |
-
# Rose helpers
|
36 |
-
# -----------------------
|
37 |
-
def _parse_rose_inputs(rose_tokens: str, rose_json: str) -> Optional[Dict[str, float]]:
|
38 |
-
"""Merge "token:weight, ..." and JSON {token: weight} into a dict."""
|
39 |
-
mapping: Dict[str, float] = {}
|
40 |
-
if rose_tokens:
|
41 |
-
for part in [p.strip() for p in rose_tokens.split(",") if p.strip()]:
|
42 |
-
if ":" in part:
|
43 |
-
k, v = part.split(":", 1)
|
44 |
-
try:
|
45 |
-
mapping[k.strip()] = float(v)
|
46 |
-
except Exception:
|
47 |
-
pass
|
48 |
-
if rose_json:
|
49 |
-
try:
|
50 |
-
j = json.loads(rose_json)
|
51 |
-
if isinstance(j, dict):
|
52 |
-
for k, v in j.items():
|
53 |
-
try:
|
54 |
-
mapping[str(k)] = float(v)
|
55 |
-
except Exception:
|
56 |
-
pass
|
57 |
-
except Exception:
|
58 |
-
pass
|
59 |
-
return mapping or None
|
60 |
-
|
61 |
-
class _RoseLogits(torch.nn.Module):
|
62 |
-
def __init__(self, bias_vec: torch.Tensor, alpha: float = 1.0):
|
63 |
-
super().__init__()
|
64 |
-
self.bias_vec = bias_vec
|
65 |
-
self.alpha = float(alpha)
|
66 |
-
def forward(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
67 |
-
return scores + self.alpha * self.bias_vec.to(scores.device)
|
68 |
-
|
69 |
-
def _bias_from_tokens(tok, mapping: Dict[str, float]) -> torch.Tensor:
|
70 |
-
bias = torch.zeros(len(tok), dtype=torch.float32)
|
71 |
-
for s, w in mapping.items():
|
72 |
-
tid = tok.convert_tokens_to_ids(s)
|
73 |
-
if isinstance(tid, list):
|
74 |
-
for t in tid:
|
75 |
-
if isinstance(t, int) and t >= 0:
|
76 |
-
bias[t] += float(w) / max(1, len(tid))
|
77 |
-
elif isinstance(tid, int) and t >= 0:
|
78 |
-
bias[tid] += float(w)
|
79 |
-
return bias
|
80 |
-
|
81 |
# -----------------------
|
82 |
# ZeroGPU inference (GPU work ONLY inside this function)
|
83 |
# -----------------------
|
84 |
@spaces.GPU(duration=120)
|
85 |
-
def gpu_generate(prompt_str: str,
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
rose_json: str,
|
90 |
-
rose_alpha: float,
|
91 |
-
seed: Optional[int]) -> str:
|
92 |
-
"""Run a single completion on GPU and return only the generated text.
|
93 |
-
No Harmony. Uses chat template; slices completion by prompt length.
|
94 |
"""
|
95 |
torch.set_grad_enabled(False)
|
96 |
model = None
|
@@ -99,47 +47,46 @@ def gpu_generate(prompt_str: str,
|
|
99 |
torch.manual_seed(int(seed))
|
100 |
|
101 |
from peft import PeftModel
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
device_map="auto",
|
106 |
torch_dtype="auto",
|
|
|
|
|
107 |
trust_remote_code=True,
|
108 |
low_cpu_mem_usage=True,
|
109 |
token=HF_TOKEN,
|
110 |
)
|
|
|
|
|
111 |
if ADAPTER_ID:
|
112 |
peft_kwargs: Dict[str, Any] = {"is_trainable": False, "token": HF_TOKEN}
|
113 |
if ADAPTER_SUBFOLDER:
|
114 |
peft_kwargs["subfolder"] = ADAPTER_SUBFOLDER
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
model.eval()
|
117 |
if getattr(model.config, "pad_token_id", None) is None:
|
118 |
model.config.pad_token_id = tokenizer.pad_token_id
|
119 |
|
120 |
device = next(model.parameters()).device
|
121 |
enc = tokenizer(prompt_str, return_tensors="pt")
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
bias = _bias_from_tokens(tokenizer, mapping).to(device)
|
132 |
-
logits_processor = [_RoseLogits(bias, float(rose_alpha))]
|
133 |
-
|
134 |
-
out = model.generate(
|
135 |
-
**inputs,
|
136 |
-
do_sample=True,
|
137 |
-
temperature=float(temperature),
|
138 |
max_new_tokens=int(max_new_tokens),
|
139 |
pad_token_id=model.config.pad_token_id,
|
140 |
-
logits_processor=logits_processor,
|
141 |
)
|
142 |
-
new_ids =
|
143 |
return tokenizer.decode(new_ids, skip_special_tokens=True)
|
144 |
except Exception as e:
|
145 |
return f"[Error] {type(e).__name__}: {e}"
|
@@ -152,28 +99,31 @@ def gpu_generate(prompt_str: str,
|
|
152 |
if torch.cuda.is_available():
|
153 |
torch.cuda.empty_cache()
|
154 |
|
155 |
-
# -----------------------
|
156 |
-
# Gradio glue (no streaming; minimal controls)
|
157 |
-
# -----------------------
|
158 |
-
def _build_messages(message, history) -> List[Dict[str, str]]:
|
159 |
-
msgs: List[Dict[str, str]] = []
|
160 |
-
# Keep it simple: prepend a small system to steady tone
|
161 |
-
msgs.append({"role": "system", "content": "You are Mirel."})
|
162 |
-
if isinstance(history, list):
|
163 |
-
for m in history:
|
164 |
-
if isinstance(m, dict) and "role" in m:
|
165 |
-
msgs.append({"role": m["role"], "content": str(m.get("content", ""))})
|
166 |
-
elif isinstance(m, (list, tuple)) and len(m) >= 2:
|
167 |
-
u, a = m[0], m[1]
|
168 |
-
if u: msgs.append({"role": "user", "content": str(u)})
|
169 |
-
if a: msgs.append({"role": "assistant", "content": str(a)})
|
170 |
-
if isinstance(message, dict):
|
171 |
-
msgs.append({"role": message.get("role", "user"), "content": str(message.get("content", ""))})
|
172 |
-
else:
|
173 |
-
msgs.append({"role": "user", "content": str(message)})
|
174 |
-
return msgs
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
|
|
|
|
|
|
|
|
177 |
def ui_generate(message, history, temperature, max_new_tokens, rose_alpha, rose_tokens, rose_json, seed):
|
178 |
try:
|
179 |
msgs = _build_messages(message, history)
|
@@ -184,24 +134,13 @@ def ui_generate(message, history, temperature, max_new_tokens, rose_alpha, rose_
|
|
184 |
|
185 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
186 |
gr.Markdown("""
|
187 |
-
# Mirel – Rose LoRA
|
188 |
-
|
189 |
""")
|
190 |
|
191 |
-
with gr.Accordion("Generation", open=True):
|
192 |
-
temperature = gr.Slider(0.0, 2.0, value=0.6, step=0.05, label="Temperature")
|
193 |
-
max_new = gr.Slider(16, 2048, value=512, step=8, label="Max new tokens")
|
194 |
-
seed = gr.Number(value=None, label="Seed (optional)", precision=0)
|
195 |
-
|
196 |
-
with gr.Accordion("Rose guidance", open=False):
|
197 |
-
rose_alpha = gr.Slider(0.0, 5.0, value=1.0, step=0.05, label="Alpha (strength)")
|
198 |
-
rose_tokens = gr.Textbox(label="token:weight comma list", placeholder="e.g. reason:1.2, simple:-0.4", value="")
|
199 |
-
rose_json = gr.Textbox(label="JSON {token: weight}", placeholder='{"reason": 1.0, "ramble": -0.8}', value="")
|
200 |
-
|
201 |
gr.ChatInterface(
|
202 |
fn=ui_generate,
|
203 |
type="messages",
|
204 |
-
additional_inputs=[temperature, max_new, rose_alpha, rose_tokens, rose_json, seed],
|
205 |
title="Mirel",
|
206 |
cache_examples=False,
|
207 |
)
|
|
|
31 |
if tokenizer.pad_token_id is None:
|
32 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# -----------------------
|
35 |
# ZeroGPU inference (GPU work ONLY inside this function)
|
36 |
# -----------------------
|
37 |
@spaces.GPU(duration=120)
|
38 |
+
def gpu_generate(prompt_str: str, seed: Optional[int] = None, max_new_tokens: int = 512) -> str:
|
39 |
+
"""Minimal generation using GPT-OSS-20B + Rose LoRA.
|
40 |
+
- All CUDA work stays inside this function (ZeroGPU-safe).
|
41 |
+
- No Harmony, no extra knobs; rely on model defaults.
|
|
|
|
|
|
|
|
|
|
|
42 |
"""
|
43 |
torch.set_grad_enabled(False)
|
44 |
model = None
|
|
|
47 |
torch.manual_seed(int(seed))
|
48 |
|
49 |
from peft import PeftModel
|
50 |
+
|
51 |
+
model_kwargs = dict(
|
52 |
+
attn_implementation="eager",
|
|
|
53 |
torch_dtype="auto",
|
54 |
+
use_cache=True,
|
55 |
+
device_map="auto",
|
56 |
trust_remote_code=True,
|
57 |
low_cpu_mem_usage=True,
|
58 |
token=HF_TOKEN,
|
59 |
)
|
60 |
+
base_model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **model_kwargs)
|
61 |
+
|
62 |
if ADAPTER_ID:
|
63 |
peft_kwargs: Dict[str, Any] = {"is_trainable": False, "token": HF_TOKEN}
|
64 |
if ADAPTER_SUBFOLDER:
|
65 |
peft_kwargs["subfolder"] = ADAPTER_SUBFOLDER
|
66 |
+
peft_model = PeftModel.from_pretrained(base_model, ADAPTER_ID, **peft_kwargs)
|
67 |
+
model = peft_model.merge_and_unload()
|
68 |
+
else:
|
69 |
+
model = base_model
|
70 |
+
|
71 |
model.eval()
|
72 |
if getattr(model.config, "pad_token_id", None) is None:
|
73 |
model.config.pad_token_id = tokenizer.pad_token_id
|
74 |
|
75 |
device = next(model.parameters()).device
|
76 |
enc = tokenizer(prompt_str, return_tensors="pt")
|
77 |
+
input_ids = enc["input_ids"].to(device)
|
78 |
+
attention_mask = enc.get("attention_mask")
|
79 |
+
if attention_mask is None:
|
80 |
+
attention_mask = (input_ids != tokenizer.pad_token_id).long().to(device)
|
81 |
+
|
82 |
+
prompt_len = int(input_ids.shape[-1])
|
83 |
+
output_ids = model.generate(
|
84 |
+
input_ids=input_ids,
|
85 |
+
attention_mask=attention_mask,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
max_new_tokens=int(max_new_tokens),
|
87 |
pad_token_id=model.config.pad_token_id,
|
|
|
88 |
)
|
89 |
+
new_ids = output_ids[0, prompt_len:]
|
90 |
return tokenizer.decode(new_ids, skip_special_tokens=True)
|
91 |
except Exception as e:
|
92 |
return f"[Error] {type(e).__name__}: {e}"
|
|
|
99 |
if torch.cuda.is_available():
|
100 |
torch.cuda.empty_cache()
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
def ui_generate(message, history):
|
104 |
+
try:
|
105 |
+
# ChatInterface(type='messages') gives OpenAI-style dicts.
|
106 |
+
msgs: List[Dict[str, str]] = []
|
107 |
+
# Keep defaults: no explicit system beyond template defaults
|
108 |
+
if isinstance(history, list):
|
109 |
+
for m in history:
|
110 |
+
if isinstance(m, dict) and "role" in m:
|
111 |
+
msgs.append({"role": m.get("role", "user"), "content": str(m.get("content", ""))})
|
112 |
+
elif isinstance(m, (list, tuple)) and len(m) >= 2:
|
113 |
+
u, a = m[0], m[1]
|
114 |
+
if u:
|
115 |
+
msgs.append({"role": "user", "content": str(u)})
|
116 |
+
if a:
|
117 |
+
msgs.append({"role": "assistant", "content": str(a)})
|
118 |
+
if isinstance(message, dict):
|
119 |
+
msgs.append({"role": message.get("role", "user"), "content": str(message.get("content", ""))})
|
120 |
+
else:
|
121 |
+
msgs.append({"role": "user", "content": str(message)})
|
122 |
|
123 |
+
prompt = tokenizer.apply_chat_template(msgs, add_generation_prompt=True, tokenize=False)
|
124 |
+
return gpu_generate(prompt)
|
125 |
+
except Exception as e:
|
126 |
+
return f"[Error] {type(e).__name__}: {e}"
|
127 |
def ui_generate(message, history, temperature, max_new_tokens, rose_alpha, rose_tokens, rose_json, seed):
|
128 |
try:
|
129 |
msgs = _build_messages(message, history)
|
|
|
134 |
|
135 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
136 |
gr.Markdown("""
|
137 |
+
# Mirel – Rose LoRA (ZeroGPU, minimal)
|
138 |
+
Loads GPT‑OSS‑20B + Rose LoRA and generates with default settings.
|
139 |
""")
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
gr.ChatInterface(
|
142 |
fn=ui_generate,
|
143 |
type="messages",
|
|
|
144 |
title="Mirel",
|
145 |
cache_examples=False,
|
146 |
)
|