Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,901 Bytes
0e31052 e9b0f2d 0e31052 e9b0f2d 99d979b 0e31052 99d979b 0e31052 99d979b 0e31052 99d979b 0e31052 99d979b d741dd0 99d979b 0e31052 99d979b d741dd0 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 99d979b e9b0f2d d741dd0 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d d741dd0 0e31052 e9b0f2d 0e31052 e9b0f2d 99d979b 0e31052 99d979b e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 99d979b 0e31052 99d979b 0e31052 e9b0f2d 0e31052 e9b0f2d 99d979b 0e31052 99d979b e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 99d979b d741dd0 0e31052 d741dd0 0e31052 99d979b 0e31052 e9b0f2d 0e31052 d741dd0 0e31052 99d979b e9b0f2d d741dd0 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 99d979b e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 99d979b e9b0f2d 0e31052 e9b0f2d 99d979b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
# beeper.py
# --------------------------------------------------------------------------------------------------
# Beeper — Rose-based tiny GPT (inference module)
# - Decoder-only GPT with SDPA (FlashAttention path on Ampere+)
# - Model exactly mirrors the training-time architecture you provided (dim=512, L=6, H=8)
# - Safe state-dict loader that auto-sizes pentachora banks before strict load
# - Generation API with repetition/presence/frequency penalties (same defaults as training)
# --------------------------------------------------------------------------------------------------
from __future__ import annotations
import math
import re
import inspect
from contextlib import nullcontext
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
# --- Prefer high-throughput matmul where possible (Ampere/Hopper) ---
torch.set_float32_matmul_precision("high")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# ---- Version-safe SDPA (FlashAttention) selection -------------------------------------------------
try:
# PyTorch 2.3+ modern API
from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
from torch.nn.attention import SDPBackend as _SDPBackend
_SDPA_SIG = inspect.signature(_sdpa_kernel_modern)
_sdpa_kernel = _sdpa_kernel_modern
except Exception:
try:
# Legacy API
from torch.backends.cuda import sdp_kernel as _sdpa_kernel_legacy
_SDPA_SIG = inspect.signature(_sdpa_kernel_legacy)
_SDPBackend = None
_sdpa_kernel = _sdpa_kernel_legacy
except Exception:
_SDPA_SIG = None
_SDPBackend = None
_sdpa_kernel = None
def sdpa_ctx_prefer_flash():
"""
Best-effort context to bias SDPA toward FlashAttention on supported GPUs.
Falls back to no-op if not available.
"""
if _sdpa_kernel is None or _SDPA_SIG is None:
return nullcontext()
params = {p.name for p in _SDPA_SIG.parameters.values()}
try:
if "backends" in params and _SDPBackend is not None:
return _sdpa_kernel(backends=[
_SDPBackend.FLASH_ATTENTION,
_SDPBackend.EFFICIENT_ATTENTION,
_SDPBackend.MATH
])
if "backend" in params and _SDPBackend is not None:
return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
if {"use_flash", "use_math", "use_mem_efficient"} <= params:
return _sdpa_kernel(use_flash=True, use_math=False, use_mem_efficient=True)
except Exception:
pass
return nullcontext()
# --------------------------------- Core blocks ------------------------------------------------------
class CausalSelfAttention(nn.Module):
"""
Multi-head causal self-attention layer using PyTorch SDPA.
- On CUDA, uses scaled_dot_product_attention with is_causal=True and dropout during training.
- On CPU, falls back to manual masked attention.
"""
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
super().__init__()
assert dim % n_heads == 0, "dim must be divisible by n_heads"
self.nh = int(n_heads)
self.hd = dim // self.nh
self.qkv = nn.Linear(dim, 3 * dim, bias=False)
self.proj = nn.Linear(dim, dim, bias=False)
self.attn_dropout = float(attn_dropout)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, T, C = x.shape
qkv = self.qkv(x)
q, k, v = qkv.chunk(3, dim=-1)
q = q.view(B, T, self.nh, self.hd).transpose(1, 2) # [B,H,T,D]
k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
if x.is_cuda:
with sdpa_ctx_prefer_flash():
y = F.scaled_dot_product_attention(
q, k, v,
is_causal=True,
dropout_p=self.attn_dropout if self.training else 0.0,
)
else:
scale = 1.0 / math.sqrt(self.hd)
att = (q @ k.transpose(-2, -1)) * scale
mask = torch.full((1, 1, T, T), float("-inf"), device=x.device)
mask = torch.triu(mask, diagonal=1)
att = (att + mask).softmax(dim=-1)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.proj(y)
class MLP(nn.Module):
"""GELU MLP with dropout, sized by mlp_ratio."""
def __init__(self, dim: int, mlp_ratio: float = 4.0, dropout: float = 0.1):
super().__init__()
hidden = int(dim * mlp_ratio)
self.fc1 = nn.Linear(dim, hidden)
self.fc2 = nn.Linear(hidden, dim)
self.drop = nn.Dropout(dropout)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = F.gelu(x, approximate="tanh")
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
# --------------------------------- Beeper Model -----------------------------------------------------
class BeeperRoseGPT(nn.Module):
"""
Decoder-only GPT used by Beeper during training and inference.
Config keys used:
- vocab_size, dim, context, n_heads, n_layers, mlp_ratio
- resid_dropout, dropout, grad_checkpoint
Notes:
- Shares token embedding with LM head (tied weights).
- Includes Rose projection/anchors and pentachora banks; unused for plain generation,
but kept for full compatibility with trained checkpoints.
"""
def __init__(self, cfg: dict):
super().__init__()
V, D, Ctx = cfg["vocab_size"], cfg["dim"], cfg["context"]
H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
RD, AD = cfg.get("resid_dropout", 0.1), cfg.get("dropout", 0.0)
self.grad_checkpoint = bool(cfg.get("grad_checkpoint", False))
self.vocab_size, self.context = int(V), int(Ctx)
self.token_emb = nn.Embedding(V, D)
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D))
self.drop = nn.Dropout(RD)
self.blocks = nn.ModuleList([
nn.ModuleDict({
"norm1": nn.LayerNorm(D),
"attn": CausalSelfAttention(D, H, attn_dropout=AD),
"norm2": nn.LayerNorm(D),
"mlp": MLP(D, mlp_ratio=MR, dropout=RD),
})
for _ in range(L)
])
self.norm = nn.LayerNorm(D)
self.lm_head = nn.Linear(D, V, bias=False)
# Weight tying
self.lm_head.weight = self.token_emb.weight
# Rose projection + anchors (present in checkpoints)
self.rose_proj = nn.Linear(D, D, bias=False)
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D ** 0.5))
# Pentachora banks (created lazily to match state dict)
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
self.penta_coarse: Optional[nn.Parameter] = None # [C,5,D]
self.penta_medium: Optional[nn.Parameter] = None # [T,5,D]
self.penta_fine: Optional[nn.Parameter] = None # [M,5,D]
self.apply(self._init_weights)
@staticmethod
def _init_weights(m: nn.Module):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
# ---- Pentachora creation (must match sizes in checkpoint before strict load) -------------------
def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device: torch.device):
"""
Initialize pentachora banks if not already present.
Shapes must match checkpoint entries for strict loading.
"""
if self.pent_inited.item() == 1:
return
def bank(C: int) -> nn.Parameter:
if C <= 0:
# Keep a zero-sized parameter to satisfy strict loading (rare).
return nn.Parameter(torch.zeros((0, 5, dim), device=device))
pts = torch.randn(C, 5, dim, device=device)
pts = F.normalize(pts - pts.mean(dim=1, keepdim=True), dim=-1)
return nn.Parameter(pts)
self.penta_coarse = bank(int(coarse_C))
self.penta_medium = bank(int(medium_C))
self.penta_fine = bank(int(fine_C))
self.pent_inited.fill_(1)
# ---- Backbone / forward -----------------------------------------------------------------------
def _block_forward(self, blk: nn.ModuleDict, x: torch.Tensor) -> torch.Tensor:
x = x + blk["attn"](blk["norm1"](x))
x = x + blk["mlp"](blk["norm2"](x))
return x
def backbone(self, idx: torch.Tensor) -> torch.Tensor:
B, T = idx.shape
x = self.token_emb(idx) + self.pos_emb[:, :T, :]
x = self.drop(x)
if self.grad_checkpoint and self.training:
from torch.utils.checkpoint import checkpoint
for blk in self.blocks:
x = checkpoint(lambda _x: self._block_forward(blk, _x), x) # type: ignore[arg-type]
else:
for blk in self.blocks:
x = self._block_forward(blk, x)
return self.norm(x)
def forward(self, idx: torch.Tensor) -> torch.Tensor:
h = self.backbone(idx)
return self.lm_head(h)
# ---- Utilities ---------------------------------------------------------------------------------
def hidden_states(self, idx: torch.Tensor) -> torch.Tensor:
"""Return final hidden states (pre-LM head)."""
return self.backbone(idx)
def rose_hidden_pool(self, h: torch.Tensor, mode: str = "mean") -> torch.Tensor:
"""Pool hidden states for Rose-related terms (unused in plain generation)."""
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
# --------------------------------- Loader helpers ---------------------------------------------------
def prepare_model_for_state_dict(
model: BeeperRoseGPT,
state_dict: "dict[str, torch.Tensor]",
device: Optional[torch.device] = None,
) -> None:
"""
Ensure model has pentachora parameters sized to match the incoming state_dict,
so we can load with strict=True.
If the checkpoint has no pentachora (older versions), we do nothing.
"""
device = device or next(model.parameters()).device
need = all(k in state_dict for k in ("penta_coarse", "penta_medium", "penta_fine"))
if not need:
return
pc, pt, pm = state_dict["penta_coarse"], state_dict["penta_medium"], state_dict["penta_fine"]
# Expect [C,5,D]
def dims_ok(t: torch.Tensor) -> bool:
return t.ndim == 3 and t.size(1) == 5 and t.size(2) == model.token_emb.embedding_dim
if not (dims_ok(pc) and dims_ok(pt) and dims_ok(pm)):
# Shapes inconsistent; fall back to non-strict load later.
return
coarse_C = pc.size(0)
topic_C = pt.size(0)
mood_C = pm.size(0)
model.ensure_pentachora(coarse_C, topic_C, mood_C, dim=pc.size(2), device=device)
# --------------------------------- Generation -------------------------------------------------------
def _detok(text: str) -> str:
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
return text
@torch.no_grad()
def generate(
model: BeeperRoseGPT,
tok, # Hugging Face Tokenizers `Tokenizer`
cfg: dict,
prompt: str,
max_new_tokens: int = 120,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: Optional[float] = None,
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
device: Optional[torch.device] = None,
detokenize: bool = True,
) -> str:
"""
Penalized nucleus sampling (same knobs as training script).
"""
temperature = cfg.get("temperature", 0.9) if temperature is None else float(temperature)
top_k = cfg.get("top_k", 40) if top_k is None else int(top_k)
top_p = cfg.get("top_p", 0.9) if top_p is None else float(top_p)
repetition_penalty = cfg.get("repetition_penalty", 1.10) if repetition_penalty is None else float(repetition_penalty)
presence_penalty = cfg.get("presence_penalty", 0.6) if presence_penalty is None else float(presence_penalty)
frequency_penalty = cfg.get("frequency_penalty", 0.0) if frequency_penalty is None else float(frequency_penalty)
device = device or next(model.parameters()).device
model.eval()
ids = tok.encode(prompt).ids
x = torch.tensor([ids], dtype=torch.long, device=device)
V = int(cfg["vocab_size"])
counts = torch.zeros(V, dtype=torch.int32, device=device)
for t in ids:
if 0 <= t < V:
counts[t] += 1
for _ in range(int(max_new_tokens)):
logits = model(x[:, -cfg["context"]:])
logits = logits[:, -1, :]
# Repetition penalty (CTRL-like)
if repetition_penalty and repetition_penalty != 1.0:
mask = counts > 0
if mask.any():
pos = logits[:, mask] > 0
logits[:, mask][pos] /= repetition_penalty
logits[:, mask][~pos] *= repetition_penalty
# Presence/frequency penalties (OpenAI-like)
if presence_penalty or frequency_penalty:
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
logits = logits - pen.unsqueeze(0)
logits = logits / max(1e-8, temperature)
if top_k and top_k > 0:
k = min(top_k, logits.size(-1))
v, ix = torch.topk(logits, k, dim=-1)
filt = torch.full_like(logits, float("-inf"))
logits = filt.scatter_(-1, ix, v)
if top_p and top_p < 1.0:
sl, si = torch.sort(logits, descending=True)
ps = F.softmax(sl, dim=-1)
cdf = torch.cumsum(ps, dim=-1)
cutoff = (cdf > top_p).float().argmax(dim=-1)
mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff.unsqueeze(-1)
sl = sl.masked_fill(mask, float("-inf"))
logits = torch.full_like(logits, float("-inf")).scatter(-1, si, sl)
probs = F.softmax(logits, dim=-1)
next_id = torch.multinomial(probs, num_samples=1)
x = torch.cat([x, next_id], dim=1)
nid = next_id.item()
if 0 <= nid < V:
counts[nid] += 1
out = tok.decode(x[0].tolist())
return _detok(out) if detokenize else out
|