File size: 14,571 Bytes
e9b0f2d
d741dd0
99d979b
e9b0f2d
 
 
 
 
 
 
99d979b
 
 
d741dd0
 
 
 
99d979b
d741dd0
 
 
99d979b
d741dd0
99d979b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d741dd0
99d979b
 
 
 
 
 
 
d741dd0
99d979b
 
 
 
 
 
d741dd0
99d979b
 
d741dd0
99d979b
 
 
 
 
 
 
 
d741dd0
 
 
 
 
e9b0f2d
99d979b
 
e9b0f2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d979b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9b0f2d
 
 
d741dd0
e9b0f2d
d741dd0
99d979b
e9b0f2d
 
 
 
 
 
99d979b
e9b0f2d
 
 
 
 
 
 
 
d741dd0
e9b0f2d
d741dd0
99d979b
e9b0f2d
 
99d979b
 
 
 
 
e9b0f2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d741dd0
e9b0f2d
 
 
99d979b
e9b0f2d
 
 
 
 
 
99d979b
e9b0f2d
 
 
 
 
 
 
 
 
 
99d979b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9b0f2d
 
 
 
 
 
 
 
 
99d979b
 
 
 
 
 
 
e9b0f2d
 
 
 
 
 
 
 
 
99d979b
 
 
d741dd0
 
 
 
 
99d979b
d741dd0
99d979b
 
 
d741dd0
99d979b
 
e9b0f2d
 
 
 
99d979b
 
 
 
 
d741dd0
99d979b
 
 
 
 
 
 
 
 
e9b0f2d
d741dd0
 
 
 
 
99d979b
d741dd0
e9b0f2d
 
 
 
 
d741dd0
e9b0f2d
99d979b
d741dd0
99d979b
 
 
 
 
 
 
 
 
 
 
e9b0f2d
d741dd0
99d979b
 
 
 
 
d741dd0
 
 
99d979b
 
 
d741dd0
99d979b
 
d741dd0
99d979b
 
 
e9b0f2d
d741dd0
e9b0f2d
99d979b
 
 
 
 
 
e9b0f2d
 
 
 
d741dd0
e9b0f2d
 
 
d741dd0
 
e9b0f2d
99d979b
e9b0f2d
 
 
 
 
99d979b
e9b0f2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d741dd0
e9b0f2d
 
d741dd0
e9b0f2d
 
 
 
 
 
d741dd0
e9b0f2d
99d979b
 
 
 
 
 
 
e9b0f2d
 
 
 
 
 
 
 
99d979b
 
 
d741dd0
 
 
 
 
99d979b
d741dd0
99d979b
 
 
 
 
 
 
 
 
 
 
 
d741dd0
99d979b
 
 
 
 
 
 
d741dd0
99d979b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
"""
Rose Beeper Model - Inference Components
Extracted classes and utilities for model inference
"""

import os
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Dict, Any
from contextlib import nullcontext
import inspect
import re
from tokenizers import Tokenizer
from safetensors.torch import load_file as load_safetensors


# ============================================================================
# SDPA (Scaled Dot Product Attention) Configuration
# ============================================================================

# Version-safe SDPA context helper
try:
    from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
    from torch.nn.attention import SDPBackend as _SDPBackend
    _SDPA_SIG = inspect.signature(_sdpa_kernel_modern)
    _sdpa_kernel = _sdpa_kernel_modern
except Exception:
    try:
        from torch.backends.cuda import sdp_kernel as _sdpa_kernel_legacy
        _SDPA_SIG = inspect.signature(_sdpa_kernel_legacy)
        _SDPBackend = None
        _sdpa_kernel = _sdpa_kernel_legacy
    except Exception:
        _SDPA_SIG = None
        _SDPBackend = None
        _sdpa_kernel = None


def sdpa_ctx_prefer_flash():
    """Bias SDPA toward FlashAttention when available; no-op if unknown."""
    if _sdpa_kernel is None or _SDPA_SIG is None:
        return nullcontext()

    params = {p.name for p in _SDPA_SIG.parameters.values()}
    try:
        # Modern API (PyTorch 2.3+): backends=[...]
        if "backends" in params and _SDPBackend is not None:
            return _sdpa_kernel(backends=[
                _SDPBackend.FLASH_ATTENTION,
                _SDPBackend.EFFICIENT_ATTENTION,
                _SDPBackend.MATH
            ])
        # Modern API (alt): backend=...
        if "backend" in params and _SDPBackend is not None:
            return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
        # Legacy boolean flags (old CUDA backend)
        if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
            return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
        if {"use_flash", "use_math", "use_mem_efficient"} <= params:
            return _sdpa_kernel(use_flash=True, use_math=False, use_mem_efficient=True)
    except Exception:
        pass
    return nullcontext()


# ============================================================================
# Model Components
# ============================================================================

class CausalSelfAttention(nn.Module):
    """Multi-head causal self-attention with optional FlashAttention."""
    
    def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
        super().__init__()
        assert dim % n_heads == 0
        self.nh = n_heads
        self.hd = dim // n_heads
        self.qkv = nn.Linear(dim, 3 * dim, bias=False)
        self.proj = nn.Linear(dim, dim, bias=False)
        self.attn_dropout = attn_dropout

    def forward(self, x):
        B, T, C = x.shape
        qkv = self.qkv(x)
        q, k, v = qkv.chunk(3, dim=-1)
        q = q.view(B, T, self.nh, self.hd).transpose(1, 2)
        k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
        v = v.view(B, T, self.nh, self.hd).transpose(1, 2)

        if x.is_cuda:
            with sdpa_ctx_prefer_flash():
                y = F.scaled_dot_product_attention(
                    q, k, v,
                    is_causal=True,
                    dropout_p=self.attn_dropout if self.training else 0.0,
                )
        else:
            scale = 1.0 / math.sqrt(self.hd)
            att = (q @ k.transpose(-2, -1)) * scale
            mask = torch.full((1, 1, T, T), float("-inf"), device=x.device)
            mask = torch.triu(mask, diagonal=1)
            att = (att + mask).softmax(dim=-1)
            y = att @ v

        y = y.transpose(1, 2).contiguous().view(B, T, C)
        return self.proj(y)


class MLP(nn.Module):
    """Feed-forward network with GELU activation."""
    
    def __init__(self, dim, mlp_ratio=4.0, dropout=0.1):
        super().__init__()
        hidden = int(dim * mlp_ratio)
        self.fc1 = nn.Linear(dim, hidden)
        self.fc2 = nn.Linear(hidden, dim)
        self.drop = nn.Dropout(dropout)
        
    def forward(self, x):
        x = self.fc1(x)
        x = F.gelu(x, approximate="tanh")
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class BeeperRoseGPT(nn.Module):
    """Rose Beeper GPT model with pentachora banks for multi-level control."""
    
    def __init__(self, cfg: dict):
        super().__init__()
        V, D, Ctx = cfg["vocab_size"], cfg["dim"], cfg["context"]
        H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
        RD, AD, CKPT = cfg["resid_dropout"], cfg["dropout"], cfg["grad_checkpoint"]

        self.vocab_size, self.context = V, Ctx
        self.token_emb = nn.Embedding(V, D)
        self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D))
        self.drop = nn.Dropout(RD)

        self.blocks = nn.ModuleList([
            nn.ModuleDict({
                "norm1": nn.LayerNorm(D),
                "attn": CausalSelfAttention(D, H, attn_dropout=AD),
                "norm2": nn.LayerNorm(D),
                "mlp": MLP(D, mlp_ratio=MR, dropout=RD),
            }) for _ in range(L)
        ])
        self.norm = nn.LayerNorm(D)
        self.lm_head = nn.Linear(D, V, bias=False)
        self.lm_head.weight = self.token_emb.weight

        # Optional Rose projection + anchors
        self.rose_proj = nn.Linear(D, D, bias=False)
        self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))

        # Multi-level pentachora; lazily initialized
        self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
        self.penta_coarse = None
        self.penta_medium = None
        self.penta_fine = None

        self.apply(self._init)
        self.grad_checkpoint = CKPT

    @staticmethod
    def _init(m):
        if isinstance(m, nn.Linear):
            nn.init.normal_(m.weight, mean=0.0, std=0.02)
            if m.bias is not None:
                nn.init.zeros_(m.bias)
        elif isinstance(m, nn.Embedding):
            nn.init.normal_(m.weight, mean=0.0, std=0.02)

    def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device):
        """Initialize three pentachora banks."""
        if self.pent_inited.item() == 1:
            return

        def bank(C):
            pts = []
            for _ in range(int(C)):
                A = torch.randn(5, dim, device=device)
                A = F.normalize(A - A.mean(dim=0, keepdim=True), dim=-1)
                pts.append(A)
            return nn.Parameter(torch.stack(pts, dim=0))

        self.penta_coarse = bank(coarse_C)
        self.penta_medium = bank(medium_C)
        self.penta_fine = bank(fine_C)
        self.pent_inited.fill_(1)

    def _block_forward(self, blk, x):
        x = x + blk["attn"](blk["norm1"](x))
        x = x + blk["mlp"](blk["norm2"](x))
        return x

    def backbone(self, idx):
        B, T = idx.shape
        x = self.token_emb(idx) + self.pos_emb[:, :T, :]
        x = self.drop(x)
        if self.grad_checkpoint and self.training:
            from torch.utils.checkpoint import checkpoint
            for blk in self.blocks:
                x = checkpoint(lambda _x: self._block_forward(blk, _x), x)
        else:
            for blk in self.blocks:
                x = self._block_forward(blk, x)
        return self.norm(x)

    def forward(self, idx):
        h = self.backbone(idx)
        return self.lm_head(h)

    def hidden_states(self, idx):
        return self.backbone(idx)

    def rose_hidden_pool(self, h: torch.Tensor, mode="mean"):
        return h.mean(dim=1) if mode == "mean" else h[:, -1, :]


# ============================================================================
# Model I/O Utilities
# ============================================================================

class BeeperIO:
    """Utilities for saving and loading model weights."""
    
    @staticmethod
    def clean_state(sd: dict):
        """Clean state dict keys from various wrappings."""
        out = {}
        for k, v in sd.items():
            if k.startswith("_orig_mod."):
                k = k[10:]
            if k.startswith("module."):
                k = k[7:]
            out[k] = v
        return out

    @staticmethod
    def load_into_model(model: nn.Module, path: str, map_location="cpu", strict: bool = False):
        """Load weights from file into model."""
        ext = os.path.splitext(path)[1].lower()
        if ext == ".safetensors":
            sd = load_safetensors(path, device="cpu")
        else:
            raw = torch.load(path, map_location="cpu")
            sd = raw["model"] if isinstance(raw, dict) and "model" in raw else raw
        sd = BeeperIO.clean_state(sd)
        result = model.load_state_dict(sd, strict=strict)
        return result.missing_keys, result.unexpected_keys


# ============================================================================
# Text Generation
# ============================================================================

def _detok(text: str) -> str:
    """Clean up tokenized text spacing."""
    text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
    text = re.sub(r"\s+([\)\]\}])", r"\1", text)
    text = re.sub(r"([\(\[\{])\s+", r"\1", text)
    return text


@torch.no_grad()
def generate(model: BeeperRoseGPT, 
             tok: Tokenizer, 
             cfg: dict, 
             prompt: str,
             max_new_tokens: int = 120, 
             temperature: float = None, 
             top_k: int = None, 
             top_p: float = None,
             repetition_penalty: float = None, 
             presence_penalty: float = None, 
             frequency_penalty: float = None,
             device: Optional[torch.device] = None, 
             detokenize: bool = True) -> str:
    """
    Generate text from a prompt using the model.
    
    Args:
        model: The BeeperRoseGPT model
        tok: Tokenizer instance
        cfg: Configuration dictionary
        prompt: Input text prompt
        max_new_tokens: Maximum number of tokens to generate
        temperature: Sampling temperature (higher = more random)
        top_k: Top-k sampling parameter
        top_p: Top-p (nucleus) sampling parameter
        repetition_penalty: Penalty for repeated tokens
        presence_penalty: Penalty for tokens that have appeared
        frequency_penalty: Penalty based on token frequency
        device: Device to run on
        detokenize: Whether to clean up tokenization artifacts
    
    Returns:
        Generated text string
    """
    
    # Use defaults from config if not specified
    temperature = cfg["temperature"] if temperature is None else temperature
    top_k = cfg["top_k"] if top_k is None else top_k
    top_p = cfg["top_p"] if top_p is None else top_p
    repetition_penalty = cfg["repetition_penalty"] if repetition_penalty is None else repetition_penalty
    presence_penalty = cfg["presence_penalty"] if presence_penalty is None else presence_penalty
    frequency_penalty = cfg["frequency_penalty"] if frequency_penalty is None else frequency_penalty

    device = device or next(model.parameters()).device
    model.eval()
    
    # Tokenize prompt
    ids = tok.encode(prompt).ids
    x = torch.tensor([ids], dtype=torch.long, device=device)
    
    # Track token counts for penalties
    counts = torch.zeros(cfg["vocab_size"], dtype=torch.int32, device=device)
    for t in ids:
        if 0 <= t < cfg["vocab_size"]:
            counts[t] += 1

    # Generate tokens
    for _ in range(max_new_tokens):
        # Get logits for next token
        logits = model(x[:, -cfg["context"]:])
        logits = logits[:, -1, :]

        # Apply repetition penalty
        if repetition_penalty and repetition_penalty != 1.0:
            mask = counts > 0
            if mask.any():
                pos = logits[:, mask] > 0
                logits[:, mask][pos] /= repetition_penalty
                logits[:, mask][~pos] *= repetition_penalty

        # Apply presence and frequency penalties
        if presence_penalty or frequency_penalty:
            pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
            logits = logits - pen.unsqueeze(0)

        # Apply temperature
        logits = logits / max(1e-8, temperature)

        # Apply top-k sampling
        if top_k and top_k > 0:
            k = min(top_k, logits.size(-1))
            v, ix = torch.topk(logits, k, dim=-1)
            filt = torch.full_like(logits, float("-inf"))
            logits = filt.scatter_(-1, ix, v)

        # Apply top-p (nucleus) sampling
        if top_p and top_p < 1.0:
            sl, si = torch.sort(logits, descending=True)
            ps = F.softmax(sl, dim=-1)
            cdf = torch.cumsum(ps, dim=-1)
            cutoff = (cdf > top_p).float().argmax(dim=-1)
            mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff.unsqueeze(-1)
            sl = sl.masked_fill(mask, float("-inf"))
            logits = torch.full_like(logits, float("-inf")).scatter(-1, si, sl)

        # Sample next token
        probs = F.softmax(logits, dim=-1)
        next_id = torch.multinomial(probs, num_samples=1)
        x = torch.cat([x, next_id], dim=1)
        counts[next_id.item()] += 1

    # Decode output
    out = tok.decode(x[0].tolist())
    return _detok(out) if detokenize else out


# ============================================================================
# Default Configuration
# ============================================================================

def get_default_config():
    """Get the default configuration for the model."""
    return {
        "name": "Rose-Beeper",
        "context": 512,
        "vocab_size": 8192,
        "dim": 512,
        "n_layers": 6,
        "n_heads": 8,
        "mlp_ratio": 4.0,
        "dropout": 0.0,
        "resid_dropout": 0.1,
        "grad_checkpoint": False,
        
        # Generation defaults
        "temperature": 0.9,
        "top_k": 40,
        "top_p": 0.9,
        "repetition_penalty": 1.10,
        "presence_penalty": 0.6,
        "frequency_penalty": 0.0,
        
        # Capoera configuration
        "capoera": {
            "enable": True,
            "topic_bins": 512,
            "mood_bins": 7,
        }
    }