Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,571 Bytes
e9b0f2d d741dd0 99d979b e9b0f2d 99d979b d741dd0 99d979b d741dd0 99d979b d741dd0 99d979b d741dd0 99d979b d741dd0 99d979b d741dd0 99d979b d741dd0 99d979b d741dd0 e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d d741dd0 e9b0f2d d741dd0 99d979b e9b0f2d 99d979b e9b0f2d d741dd0 e9b0f2d d741dd0 99d979b e9b0f2d 99d979b e9b0f2d d741dd0 e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b d741dd0 99d979b d741dd0 99d979b d741dd0 99d979b e9b0f2d 99d979b d741dd0 99d979b e9b0f2d d741dd0 99d979b d741dd0 e9b0f2d d741dd0 e9b0f2d 99d979b d741dd0 99d979b e9b0f2d d741dd0 99d979b d741dd0 99d979b d741dd0 99d979b d741dd0 99d979b e9b0f2d d741dd0 e9b0f2d 99d979b e9b0f2d d741dd0 e9b0f2d d741dd0 e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d d741dd0 e9b0f2d d741dd0 e9b0f2d d741dd0 e9b0f2d 99d979b e9b0f2d 99d979b d741dd0 99d979b d741dd0 99d979b d741dd0 99d979b d741dd0 99d979b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
"""
Rose Beeper Model - Inference Components
Extracted classes and utilities for model inference
"""
import os
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Dict, Any
from contextlib import nullcontext
import inspect
import re
from tokenizers import Tokenizer
from safetensors.torch import load_file as load_safetensors
# ============================================================================
# SDPA (Scaled Dot Product Attention) Configuration
# ============================================================================
# Version-safe SDPA context helper
try:
from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
from torch.nn.attention import SDPBackend as _SDPBackend
_SDPA_SIG = inspect.signature(_sdpa_kernel_modern)
_sdpa_kernel = _sdpa_kernel_modern
except Exception:
try:
from torch.backends.cuda import sdp_kernel as _sdpa_kernel_legacy
_SDPA_SIG = inspect.signature(_sdpa_kernel_legacy)
_SDPBackend = None
_sdpa_kernel = _sdpa_kernel_legacy
except Exception:
_SDPA_SIG = None
_SDPBackend = None
_sdpa_kernel = None
def sdpa_ctx_prefer_flash():
"""Bias SDPA toward FlashAttention when available; no-op if unknown."""
if _sdpa_kernel is None or _SDPA_SIG is None:
return nullcontext()
params = {p.name for p in _SDPA_SIG.parameters.values()}
try:
# Modern API (PyTorch 2.3+): backends=[...]
if "backends" in params and _SDPBackend is not None:
return _sdpa_kernel(backends=[
_SDPBackend.FLASH_ATTENTION,
_SDPBackend.EFFICIENT_ATTENTION,
_SDPBackend.MATH
])
# Modern API (alt): backend=...
if "backend" in params and _SDPBackend is not None:
return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
# Legacy boolean flags (old CUDA backend)
if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
if {"use_flash", "use_math", "use_mem_efficient"} <= params:
return _sdpa_kernel(use_flash=True, use_math=False, use_mem_efficient=True)
except Exception:
pass
return nullcontext()
# ============================================================================
# Model Components
# ============================================================================
class CausalSelfAttention(nn.Module):
"""Multi-head causal self-attention with optional FlashAttention."""
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
super().__init__()
assert dim % n_heads == 0
self.nh = n_heads
self.hd = dim // n_heads
self.qkv = nn.Linear(dim, 3 * dim, bias=False)
self.proj = nn.Linear(dim, dim, bias=False)
self.attn_dropout = attn_dropout
def forward(self, x):
B, T, C = x.shape
qkv = self.qkv(x)
q, k, v = qkv.chunk(3, dim=-1)
q = q.view(B, T, self.nh, self.hd).transpose(1, 2)
k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
if x.is_cuda:
with sdpa_ctx_prefer_flash():
y = F.scaled_dot_product_attention(
q, k, v,
is_causal=True,
dropout_p=self.attn_dropout if self.training else 0.0,
)
else:
scale = 1.0 / math.sqrt(self.hd)
att = (q @ k.transpose(-2, -1)) * scale
mask = torch.full((1, 1, T, T), float("-inf"), device=x.device)
mask = torch.triu(mask, diagonal=1)
att = (att + mask).softmax(dim=-1)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.proj(y)
class MLP(nn.Module):
"""Feed-forward network with GELU activation."""
def __init__(self, dim, mlp_ratio=4.0, dropout=0.1):
super().__init__()
hidden = int(dim * mlp_ratio)
self.fc1 = nn.Linear(dim, hidden)
self.fc2 = nn.Linear(hidden, dim)
self.drop = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = F.gelu(x, approximate="tanh")
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class BeeperRoseGPT(nn.Module):
"""Rose Beeper GPT model with pentachora banks for multi-level control."""
def __init__(self, cfg: dict):
super().__init__()
V, D, Ctx = cfg["vocab_size"], cfg["dim"], cfg["context"]
H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
RD, AD, CKPT = cfg["resid_dropout"], cfg["dropout"], cfg["grad_checkpoint"]
self.vocab_size, self.context = V, Ctx
self.token_emb = nn.Embedding(V, D)
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D))
self.drop = nn.Dropout(RD)
self.blocks = nn.ModuleList([
nn.ModuleDict({
"norm1": nn.LayerNorm(D),
"attn": CausalSelfAttention(D, H, attn_dropout=AD),
"norm2": nn.LayerNorm(D),
"mlp": MLP(D, mlp_ratio=MR, dropout=RD),
}) for _ in range(L)
])
self.norm = nn.LayerNorm(D)
self.lm_head = nn.Linear(D, V, bias=False)
self.lm_head.weight = self.token_emb.weight
# Optional Rose projection + anchors
self.rose_proj = nn.Linear(D, D, bias=False)
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))
# Multi-level pentachora; lazily initialized
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
self.penta_coarse = None
self.penta_medium = None
self.penta_fine = None
self.apply(self._init)
self.grad_checkpoint = CKPT
@staticmethod
def _init(m):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device):
"""Initialize three pentachora banks."""
if self.pent_inited.item() == 1:
return
def bank(C):
pts = []
for _ in range(int(C)):
A = torch.randn(5, dim, device=device)
A = F.normalize(A - A.mean(dim=0, keepdim=True), dim=-1)
pts.append(A)
return nn.Parameter(torch.stack(pts, dim=0))
self.penta_coarse = bank(coarse_C)
self.penta_medium = bank(medium_C)
self.penta_fine = bank(fine_C)
self.pent_inited.fill_(1)
def _block_forward(self, blk, x):
x = x + blk["attn"](blk["norm1"](x))
x = x + blk["mlp"](blk["norm2"](x))
return x
def backbone(self, idx):
B, T = idx.shape
x = self.token_emb(idx) + self.pos_emb[:, :T, :]
x = self.drop(x)
if self.grad_checkpoint and self.training:
from torch.utils.checkpoint import checkpoint
for blk in self.blocks:
x = checkpoint(lambda _x: self._block_forward(blk, _x), x)
else:
for blk in self.blocks:
x = self._block_forward(blk, x)
return self.norm(x)
def forward(self, idx):
h = self.backbone(idx)
return self.lm_head(h)
def hidden_states(self, idx):
return self.backbone(idx)
def rose_hidden_pool(self, h: torch.Tensor, mode="mean"):
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
# ============================================================================
# Model I/O Utilities
# ============================================================================
class BeeperIO:
"""Utilities for saving and loading model weights."""
@staticmethod
def clean_state(sd: dict):
"""Clean state dict keys from various wrappings."""
out = {}
for k, v in sd.items():
if k.startswith("_orig_mod."):
k = k[10:]
if k.startswith("module."):
k = k[7:]
out[k] = v
return out
@staticmethod
def load_into_model(model: nn.Module, path: str, map_location="cpu", strict: bool = False):
"""Load weights from file into model."""
ext = os.path.splitext(path)[1].lower()
if ext == ".safetensors":
sd = load_safetensors(path, device="cpu")
else:
raw = torch.load(path, map_location="cpu")
sd = raw["model"] if isinstance(raw, dict) and "model" in raw else raw
sd = BeeperIO.clean_state(sd)
result = model.load_state_dict(sd, strict=strict)
return result.missing_keys, result.unexpected_keys
# ============================================================================
# Text Generation
# ============================================================================
def _detok(text: str) -> str:
"""Clean up tokenized text spacing."""
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
return text
@torch.no_grad()
def generate(model: BeeperRoseGPT,
tok: Tokenizer,
cfg: dict,
prompt: str,
max_new_tokens: int = 120,
temperature: float = None,
top_k: int = None,
top_p: float = None,
repetition_penalty: float = None,
presence_penalty: float = None,
frequency_penalty: float = None,
device: Optional[torch.device] = None,
detokenize: bool = True) -> str:
"""
Generate text from a prompt using the model.
Args:
model: The BeeperRoseGPT model
tok: Tokenizer instance
cfg: Configuration dictionary
prompt: Input text prompt
max_new_tokens: Maximum number of tokens to generate
temperature: Sampling temperature (higher = more random)
top_k: Top-k sampling parameter
top_p: Top-p (nucleus) sampling parameter
repetition_penalty: Penalty for repeated tokens
presence_penalty: Penalty for tokens that have appeared
frequency_penalty: Penalty based on token frequency
device: Device to run on
detokenize: Whether to clean up tokenization artifacts
Returns:
Generated text string
"""
# Use defaults from config if not specified
temperature = cfg["temperature"] if temperature is None else temperature
top_k = cfg["top_k"] if top_k is None else top_k
top_p = cfg["top_p"] if top_p is None else top_p
repetition_penalty = cfg["repetition_penalty"] if repetition_penalty is None else repetition_penalty
presence_penalty = cfg["presence_penalty"] if presence_penalty is None else presence_penalty
frequency_penalty = cfg["frequency_penalty"] if frequency_penalty is None else frequency_penalty
device = device or next(model.parameters()).device
model.eval()
# Tokenize prompt
ids = tok.encode(prompt).ids
x = torch.tensor([ids], dtype=torch.long, device=device)
# Track token counts for penalties
counts = torch.zeros(cfg["vocab_size"], dtype=torch.int32, device=device)
for t in ids:
if 0 <= t < cfg["vocab_size"]:
counts[t] += 1
# Generate tokens
for _ in range(max_new_tokens):
# Get logits for next token
logits = model(x[:, -cfg["context"]:])
logits = logits[:, -1, :]
# Apply repetition penalty
if repetition_penalty and repetition_penalty != 1.0:
mask = counts > 0
if mask.any():
pos = logits[:, mask] > 0
logits[:, mask][pos] /= repetition_penalty
logits[:, mask][~pos] *= repetition_penalty
# Apply presence and frequency penalties
if presence_penalty or frequency_penalty:
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
logits = logits - pen.unsqueeze(0)
# Apply temperature
logits = logits / max(1e-8, temperature)
# Apply top-k sampling
if top_k and top_k > 0:
k = min(top_k, logits.size(-1))
v, ix = torch.topk(logits, k, dim=-1)
filt = torch.full_like(logits, float("-inf"))
logits = filt.scatter_(-1, ix, v)
# Apply top-p (nucleus) sampling
if top_p and top_p < 1.0:
sl, si = torch.sort(logits, descending=True)
ps = F.softmax(sl, dim=-1)
cdf = torch.cumsum(ps, dim=-1)
cutoff = (cdf > top_p).float().argmax(dim=-1)
mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff.unsqueeze(-1)
sl = sl.masked_fill(mask, float("-inf"))
logits = torch.full_like(logits, float("-inf")).scatter(-1, si, sl)
# Sample next token
probs = F.softmax(logits, dim=-1)
next_id = torch.multinomial(probs, num_samples=1)
x = torch.cat([x, next_id], dim=1)
counts[next_id.item()] += 1
# Decode output
out = tok.decode(x[0].tolist())
return _detok(out) if detokenize else out
# ============================================================================
# Default Configuration
# ============================================================================
def get_default_config():
"""Get the default configuration for the model."""
return {
"name": "Rose-Beeper",
"context": 512,
"vocab_size": 8192,
"dim": 512,
"n_layers": 6,
"n_heads": 8,
"mlp_ratio": 4.0,
"dropout": 0.0,
"resid_dropout": 0.1,
"grad_checkpoint": False,
# Generation defaults
"temperature": 0.9,
"top_k": 40,
"top_p": 0.9,
"repetition_penalty": 1.10,
"presence_penalty": 0.6,
"frequency_penalty": 0.0,
# Capoera configuration
"capoera": {
"enable": True,
"topic_bins": 512,
"mood_bins": 7,
}
} |