meet-beeper / app.py
AbstractPhil's picture
Update app.py
4d83981 verified
raw
history blame
3.4 kB
import gradio as gr
import torch
from beeper_model import BeeperRoseGPT, generate
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file as load_safetensors
# ----------------------------
# πŸ”§ Load Model and Tokenizer
# ----------------------------
config = {
"context": 512,
"vocab_size": 8192,
"dim": 512,
"n_heads": 8,
"n_layers": 6,
"mlp_ratio": 4.0,
"temperature": 0.9,
"top_k": 40,
"top_p": 0.9,
"repetition_penalty": 1.1,
"presence_penalty": 0.6,
"frequency_penalty": 0.0,
"resid_dropout": 0.1, # Add these for model init
"dropout": 0.0,
"grad_checkpoint": False,
"tokenizer_path": "beeper.tokenizer.json"
}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load weights from Hugging Face repo
repo_id = "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512"
model_file = hf_hub_download(repo_id=repo_id, filename="beeper_rose_final.safetensors")
tokenizer_file = hf_hub_download(repo_id=repo_id, filename="tokenizer.json")
# Initialize model
infer = BeeperRoseGPT(config).to(device)
# Load safetensors properly
state_dict = load_safetensors(model_file, device=str(device))
infer.load_state_dict(state_dict)
infer.eval()
# Load tokenizer
tok = Tokenizer.from_file(tokenizer_file)
# ----------------------------
# πŸ’¬ Gradio Chat Wrapper
# ----------------------------
def beeper_reply(message, history, temperature, top_k, top_p):
# Build conversation context
prompt_parts = []
for h in history:
if h[0]: # User message exists
prompt_parts.append(f"User: {h[0]}")
if h[1]: # Assistant response exists
prompt_parts.append(f"Beeper: {h[1]}")
# Add current message
prompt_parts.append(f"User: {message}")
prompt_parts.append("Beeper:")
prompt = "\n".join(prompt_parts)
# Generate response
response = generate(
model=infer,
tok=tok,
cfg=config,
prompt=prompt,
max_new_tokens=128,
temperature=temperature,
top_k=int(top_k),
top_p=top_p,
repetition_penalty=config["repetition_penalty"],
presence_penalty=config["presence_penalty"],
frequency_penalty=config["frequency_penalty"],
device=device,
detokenize=True
)
# Clean up response - remove the prompt part if it's included
if response.startswith(prompt):
response = response[len(prompt):].strip()
return response
# ----------------------------
# πŸ–ΌοΈ Interface
# ----------------------------
demo = gr.ChatInterface(
beeper_reply,
additional_inputs=[
gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature"),
gr.Slider(1, 100, value=40, step=1, label="Top-k"),
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"),
],
chatbot=gr.Chatbot(label="Chat with Beeper πŸ€–"),
title="Beeper - A Rose-based Tiny Language Model",
description="Hello! I'm Beeper, a small language model trained with love and care. Please be patient with me - I'm still learning! πŸ’•",
examples=[
["Hello Beeper! How are you today?"],
["Can you tell me a story about a robot?"],
["What do you like to do for fun?"],
],
theme=gr.themes.Soft(),
)
if __name__ == "__main__":
demo.launch()