meet-beeper / beeper_model.py
AbstractPhil's picture
Update beeper_model.py
0e31052 verified
raw
history blame
14.9 kB
# beeper.py
# --------------------------------------------------------------------------------------------------
# Beeper — Rose-based tiny GPT (inference module)
# - Decoder-only GPT with SDPA (FlashAttention path on Ampere+)
# - Model exactly mirrors the training-time architecture you provided (dim=512, L=6, H=8)
# - Safe state-dict loader that auto-sizes pentachora banks before strict load
# - Generation API with repetition/presence/frequency penalties (same defaults as training)
# --------------------------------------------------------------------------------------------------
from __future__ import annotations
import math
import re
import inspect
from contextlib import nullcontext
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
# --- Prefer high-throughput matmul where possible (Ampere/Hopper) ---
torch.set_float32_matmul_precision("high")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# ---- Version-safe SDPA (FlashAttention) selection -------------------------------------------------
try:
# PyTorch 2.3+ modern API
from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
from torch.nn.attention import SDPBackend as _SDPBackend
_SDPA_SIG = inspect.signature(_sdpa_kernel_modern)
_sdpa_kernel = _sdpa_kernel_modern
except Exception:
try:
# Legacy API
from torch.backends.cuda import sdp_kernel as _sdpa_kernel_legacy
_SDPA_SIG = inspect.signature(_sdpa_kernel_legacy)
_SDPBackend = None
_sdpa_kernel = _sdpa_kernel_legacy
except Exception:
_SDPA_SIG = None
_SDPBackend = None
_sdpa_kernel = None
def sdpa_ctx_prefer_flash():
"""
Best-effort context to bias SDPA toward FlashAttention on supported GPUs.
Falls back to no-op if not available.
"""
if _sdpa_kernel is None or _SDPA_SIG is None:
return nullcontext()
params = {p.name for p in _SDPA_SIG.parameters.values()}
try:
if "backends" in params and _SDPBackend is not None:
return _sdpa_kernel(backends=[
_SDPBackend.FLASH_ATTENTION,
_SDPBackend.EFFICIENT_ATTENTION,
_SDPBackend.MATH
])
if "backend" in params and _SDPBackend is not None:
return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
if {"use_flash", "use_math", "use_mem_efficient"} <= params:
return _sdpa_kernel(use_flash=True, use_math=False, use_mem_efficient=True)
except Exception:
pass
return nullcontext()
# --------------------------------- Core blocks ------------------------------------------------------
class CausalSelfAttention(nn.Module):
"""
Multi-head causal self-attention layer using PyTorch SDPA.
- On CUDA, uses scaled_dot_product_attention with is_causal=True and dropout during training.
- On CPU, falls back to manual masked attention.
"""
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
super().__init__()
assert dim % n_heads == 0, "dim must be divisible by n_heads"
self.nh = int(n_heads)
self.hd = dim // self.nh
self.qkv = nn.Linear(dim, 3 * dim, bias=False)
self.proj = nn.Linear(dim, dim, bias=False)
self.attn_dropout = float(attn_dropout)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, T, C = x.shape
qkv = self.qkv(x)
q, k, v = qkv.chunk(3, dim=-1)
q = q.view(B, T, self.nh, self.hd).transpose(1, 2) # [B,H,T,D]
k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
if x.is_cuda:
with sdpa_ctx_prefer_flash():
y = F.scaled_dot_product_attention(
q, k, v,
is_causal=True,
dropout_p=self.attn_dropout if self.training else 0.0,
)
else:
scale = 1.0 / math.sqrt(self.hd)
att = (q @ k.transpose(-2, -1)) * scale
mask = torch.full((1, 1, T, T), float("-inf"), device=x.device)
mask = torch.triu(mask, diagonal=1)
att = (att + mask).softmax(dim=-1)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.proj(y)
class MLP(nn.Module):
"""GELU MLP with dropout, sized by mlp_ratio."""
def __init__(self, dim: int, mlp_ratio: float = 4.0, dropout: float = 0.1):
super().__init__()
hidden = int(dim * mlp_ratio)
self.fc1 = nn.Linear(dim, hidden)
self.fc2 = nn.Linear(hidden, dim)
self.drop = nn.Dropout(dropout)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = F.gelu(x, approximate="tanh")
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
# --------------------------------- Beeper Model -----------------------------------------------------
class BeeperRoseGPT(nn.Module):
"""
Decoder-only GPT used by Beeper during training and inference.
Config keys used:
- vocab_size, dim, context, n_heads, n_layers, mlp_ratio
- resid_dropout, dropout, grad_checkpoint
Notes:
- Shares token embedding with LM head (tied weights).
- Includes Rose projection/anchors and pentachora banks; unused for plain generation,
but kept for full compatibility with trained checkpoints.
"""
def __init__(self, cfg: dict):
super().__init__()
V, D, Ctx = cfg["vocab_size"], cfg["dim"], cfg["context"]
H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
RD, AD = cfg.get("resid_dropout", 0.1), cfg.get("dropout", 0.0)
self.grad_checkpoint = bool(cfg.get("grad_checkpoint", False))
self.vocab_size, self.context = int(V), int(Ctx)
self.token_emb = nn.Embedding(V, D)
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D))
self.drop = nn.Dropout(RD)
self.blocks = nn.ModuleList([
nn.ModuleDict({
"norm1": nn.LayerNorm(D),
"attn": CausalSelfAttention(D, H, attn_dropout=AD),
"norm2": nn.LayerNorm(D),
"mlp": MLP(D, mlp_ratio=MR, dropout=RD),
})
for _ in range(L)
])
self.norm = nn.LayerNorm(D)
self.lm_head = nn.Linear(D, V, bias=False)
# Weight tying
self.lm_head.weight = self.token_emb.weight
# Rose projection + anchors (present in checkpoints)
self.rose_proj = nn.Linear(D, D, bias=False)
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D ** 0.5))
# Pentachora banks (created lazily to match state dict)
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
self.penta_coarse: Optional[nn.Parameter] = None # [C,5,D]
self.penta_medium: Optional[nn.Parameter] = None # [T,5,D]
self.penta_fine: Optional[nn.Parameter] = None # [M,5,D]
self.apply(self._init_weights)
@staticmethod
def _init_weights(m: nn.Module):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
# ---- Pentachora creation (must match sizes in checkpoint before strict load) -------------------
def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device: torch.device):
"""
Initialize pentachora banks if not already present.
Shapes must match checkpoint entries for strict loading.
"""
if self.pent_inited.item() == 1:
return
def bank(C: int) -> nn.Parameter:
if C <= 0:
# Keep a zero-sized parameter to satisfy strict loading (rare).
return nn.Parameter(torch.zeros((0, 5, dim), device=device))
pts = torch.randn(C, 5, dim, device=device)
pts = F.normalize(pts - pts.mean(dim=1, keepdim=True), dim=-1)
return nn.Parameter(pts)
self.penta_coarse = bank(int(coarse_C))
self.penta_medium = bank(int(medium_C))
self.penta_fine = bank(int(fine_C))
self.pent_inited.fill_(1)
# ---- Backbone / forward -----------------------------------------------------------------------
def _block_forward(self, blk: nn.ModuleDict, x: torch.Tensor) -> torch.Tensor:
x = x + blk["attn"](blk["norm1"](x))
x = x + blk["mlp"](blk["norm2"](x))
return x
def backbone(self, idx: torch.Tensor) -> torch.Tensor:
B, T = idx.shape
x = self.token_emb(idx) + self.pos_emb[:, :T, :]
x = self.drop(x)
if self.grad_checkpoint and self.training:
from torch.utils.checkpoint import checkpoint
for blk in self.blocks:
x = checkpoint(lambda _x: self._block_forward(blk, _x), x) # type: ignore[arg-type]
else:
for blk in self.blocks:
x = self._block_forward(blk, x)
return self.norm(x)
def forward(self, idx: torch.Tensor) -> torch.Tensor:
h = self.backbone(idx)
return self.lm_head(h)
# ---- Utilities ---------------------------------------------------------------------------------
def hidden_states(self, idx: torch.Tensor) -> torch.Tensor:
"""Return final hidden states (pre-LM head)."""
return self.backbone(idx)
def rose_hidden_pool(self, h: torch.Tensor, mode: str = "mean") -> torch.Tensor:
"""Pool hidden states for Rose-related terms (unused in plain generation)."""
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
# --------------------------------- Loader helpers ---------------------------------------------------
def prepare_model_for_state_dict(
model: BeeperRoseGPT,
state_dict: "dict[str, torch.Tensor]",
device: Optional[torch.device] = None,
) -> None:
"""
Ensure model has pentachora parameters sized to match the incoming state_dict,
so we can load with strict=True.
If the checkpoint has no pentachora (older versions), we do nothing.
"""
device = device or next(model.parameters()).device
need = all(k in state_dict for k in ("penta_coarse", "penta_medium", "penta_fine"))
if not need:
return
pc, pt, pm = state_dict["penta_coarse"], state_dict["penta_medium"], state_dict["penta_fine"]
# Expect [C,5,D]
def dims_ok(t: torch.Tensor) -> bool:
return t.ndim == 3 and t.size(1) == 5 and t.size(2) == model.token_emb.embedding_dim
if not (dims_ok(pc) and dims_ok(pt) and dims_ok(pm)):
# Shapes inconsistent; fall back to non-strict load later.
return
coarse_C = pc.size(0)
topic_C = pt.size(0)
mood_C = pm.size(0)
model.ensure_pentachora(coarse_C, topic_C, mood_C, dim=pc.size(2), device=device)
# --------------------------------- Generation -------------------------------------------------------
def _detok(text: str) -> str:
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
return text
@torch.no_grad()
def generate(
model: BeeperRoseGPT,
tok, # Hugging Face Tokenizers `Tokenizer`
cfg: dict,
prompt: str,
max_new_tokens: int = 120,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: Optional[float] = None,
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
device: Optional[torch.device] = None,
detokenize: bool = True,
) -> str:
"""
Penalized nucleus sampling (same knobs as training script).
"""
temperature = cfg.get("temperature", 0.9) if temperature is None else float(temperature)
top_k = cfg.get("top_k", 40) if top_k is None else int(top_k)
top_p = cfg.get("top_p", 0.9) if top_p is None else float(top_p)
repetition_penalty = cfg.get("repetition_penalty", 1.10) if repetition_penalty is None else float(repetition_penalty)
presence_penalty = cfg.get("presence_penalty", 0.6) if presence_penalty is None else float(presence_penalty)
frequency_penalty = cfg.get("frequency_penalty", 0.0) if frequency_penalty is None else float(frequency_penalty)
device = device or next(model.parameters()).device
model.eval()
ids = tok.encode(prompt).ids
x = torch.tensor([ids], dtype=torch.long, device=device)
V = int(cfg["vocab_size"])
counts = torch.zeros(V, dtype=torch.int32, device=device)
for t in ids:
if 0 <= t < V:
counts[t] += 1
for _ in range(int(max_new_tokens)):
logits = model(x[:, -cfg["context"]:])
logits = logits[:, -1, :]
# Repetition penalty (CTRL-like)
if repetition_penalty and repetition_penalty != 1.0:
mask = counts > 0
if mask.any():
pos = logits[:, mask] > 0
logits[:, mask][pos] /= repetition_penalty
logits[:, mask][~pos] *= repetition_penalty
# Presence/frequency penalties (OpenAI-like)
if presence_penalty or frequency_penalty:
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
logits = logits - pen.unsqueeze(0)
logits = logits / max(1e-8, temperature)
if top_k and top_k > 0:
k = min(top_k, logits.size(-1))
v, ix = torch.topk(logits, k, dim=-1)
filt = torch.full_like(logits, float("-inf"))
logits = filt.scatter_(-1, ix, v)
if top_p and top_p < 1.0:
sl, si = torch.sort(logits, descending=True)
ps = F.softmax(sl, dim=-1)
cdf = torch.cumsum(ps, dim=-1)
cutoff = (cdf > top_p).float().argmax(dim=-1)
mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff.unsqueeze(-1)
sl = sl.masked_fill(mask, float("-inf"))
logits = torch.full_like(logits, float("-inf")).scatter(-1, si, sl)
probs = F.softmax(logits, dim=-1)
next_id = torch.multinomial(probs, num_samples=1)
x = torch.cat([x, next_id], dim=1)
nid = next_id.item()
if 0 <= nid < V:
counts[nid] += 1
out = tok.decode(x[0].tolist())
return _detok(out) if detokenize else out