Spaces:
Running
on
Zero
Running
on
Zero
# app.py | |
# -------------------------------------------------------------------------------------------------- | |
# Gradio app for Beeper | |
# - Loads released safetensors + tokenizer from Hugging Face | |
# - Auto-sizes pentachora banks to match checkpoints (across Beeper v1..v4) | |
# - Generation uses same knobs & penalties as training script | |
# -------------------------------------------------------------------------------------------------- | |
import gradio as gr | |
import torch | |
from tokenizers import Tokenizer | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file as load_safetensors | |
from beeper_model import BeeperRoseGPT, generate, prepare_model_for_state_dict | |
# ---------------------------- | |
# π§ Model versions configuration | |
# ---------------------------- | |
MODEL_VERSIONS = { | |
"Beeper v4 (Advanced)": { | |
"repo_id": "AbstractPhil/beeper-rose-v4", | |
"model_file": "beeper_final.safetensors", | |
"description": "Beeper v4 with nearly 40% the full corpus training - the most capable version currently." | |
}, | |
"Beeper v3 (Multi-Concept)": { | |
"repo_id": "AbstractPhil/beeper-rose-v3", | |
"model_file": "beeper_final.safetensors", | |
"description": "Beeper v3 with 30+ epochs including reasoning, math, and ethics" | |
}, | |
"Beeper v2 (Extended)": { | |
"repo_id": "AbstractPhil/beeper-rose-v2", | |
"model_file": "beeper_final.safetensors", | |
"description": "Beeper v2 with extended training (~15 epochs)" | |
}, | |
"Beeper v1 (Original)": { | |
"repo_id": "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512", | |
"model_file": "beeper_rose.safetensors", | |
"description": "Original Beeper trained on TinyStories" | |
}, | |
} | |
# Base configuration (matches training defaults) | |
CONFIG = { | |
"context": 512, | |
"vocab_size": 8192, | |
"dim": 512, | |
"n_heads": 8, | |
"n_layers": 6, | |
"mlp_ratio": 4.0, | |
"temperature": 0.9, | |
"top_k": 40, | |
"top_p": 0.9, | |
"repetition_penalty": 1.10, | |
"presence_penalty": 0.6, | |
"frequency_penalty": 0.0, | |
"resid_dropout": 0.1, | |
"dropout": 0.0, | |
"grad_checkpoint": False, | |
# tokenizer_path not needed here; we load tokenizer.json from the HF repo | |
} | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Globals (kept simple for a single process Gradio app) | |
infer: BeeperRoseGPT | None = None | |
tok: Tokenizer | None = None | |
current_version: str | None = None | |
def load_model_version(version_name: str) -> str: | |
""" | |
Download the checkpoint and tokenizer, build model, ensure pentachora sizes match, | |
then strictly load weights. Robust to v1/v2 (no pentas) and v3/v4 (with pentas). | |
""" | |
global infer, tok, current_version | |
if current_version == version_name and infer is not None and tok is not None: | |
return f"Already loaded: {version_name}" | |
version_info = MODEL_VERSIONS[version_name] | |
try: | |
# Download artifacts | |
model_file = hf_hub_download( | |
repo_id=version_info["repo_id"], | |
filename=version_info["model_file"] | |
) | |
tokenizer_file = hf_hub_download( | |
repo_id=version_info["repo_id"], | |
filename="tokenizer.json" | |
) | |
# Load state dict on CPU, inspect pentachora shapes if present | |
state_dict = load_safetensors(model_file, device="cpu") | |
# Build model & pre-create pentachora if needed | |
m = BeeperRoseGPT(CONFIG).to(device) | |
prepare_model_for_state_dict(m, state_dict, device=device) | |
# Try strict load first; if shapes drift (rare), fallback to non-strict | |
try: | |
missing, unexpected = m.load_state_dict(state_dict, strict=True) | |
# PyTorch returns NamedTuple; report counts | |
_msg = f"strict load ok | missing={len(missing)} unexpected={len(unexpected)}" | |
except Exception as e: | |
_msg = f"strict load failed ({e}); trying non-strictβ¦" | |
# Non-strict load for very old snapshots | |
m.load_state_dict(state_dict, strict=False) | |
m.eval() | |
# Tokenizer | |
t = Tokenizer.from_file(tokenizer_file) | |
# Swap globals | |
infer, tok = m, t | |
current_version = version_name | |
return f"Successfully loaded: {version_name} ({_msg})" | |
except Exception as e: | |
infer = None | |
tok = None | |
current_version = None | |
return f"Error loading {version_name}: {str(e)}" | |
# Load default on startup β prefer v4, fallback to v3 | |
try: | |
load_status = load_model_version("Beeper v4 (Advanced)") | |
if "Error" in load_status: | |
print(f"v4 not ready yet: {load_status}") | |
load_status = load_model_version("Beeper v3 (Multi-Concept)") | |
except Exception as _: | |
load_status = load_model_version("Beeper v3 (Multi-Concept)") | |
print(load_status) | |
# ---------------------------- | |
# π¬ Chat wrapper | |
# ---------------------------- | |
def beeper_reply( | |
message: str, | |
history: list[tuple[str, str]] | None, | |
model_version: str, | |
temperature: float | None, | |
top_k: int | None, | |
top_p: float | None, | |
max_new_tokens: int = 80 | |
) -> str: | |
global infer, tok, current_version | |
# Hot-swap versions if the dropdown changed | |
if model_version != current_version: | |
status = load_model_version(model_version) | |
if "Error" in status: | |
return f"β οΈ {status}" | |
if infer is None or tok is None: | |
return "β οΈ Model not loaded. Please select a version and try again." | |
# Light prompting heuristics (consistent with your example) | |
m = message.strip() | |
if "?" in m: | |
prompt = f"Q: {m}\nA:" | |
elif m.lower() in {"hi", "hello", "hey"}: | |
prompt = 'The little robot said hello. She said, "' | |
elif "story" in m.lower(): | |
prompt = "Once upon a time, there was a robot. " | |
else: | |
prompt = m + ". " | |
# Generate | |
text = generate( | |
model=infer, | |
tok=tok, | |
cfg=CONFIG, | |
prompt=prompt, | |
max_new_tokens=int(max_new_tokens), | |
temperature=float(temperature) if temperature is not None else None, | |
top_k=int(top_k) if top_k is not None else None, | |
top_p=float(top_p) if top_p is not None else None, | |
repetition_penalty=1.10, | |
presence_penalty=0.8, | |
frequency_penalty=0.1, | |
device=device, | |
detokenize=True, | |
) | |
# Strip prompt echoes & artifacts | |
if text.startswith(prompt): | |
text = text[len(prompt):] | |
text = text.replace("Q:", "").replace("A:", "") | |
lines = [ln.strip() for ln in text.splitlines() if ln.strip()] | |
if lines: | |
text = lines[0] | |
# If user message echoed at head, trim after first occurrence | |
head = m[:20].lower() | |
if text.lower().startswith(head): | |
idx = text.lower().find(head) | |
text = text[idx + len(head):].strip() or text | |
for artifact in ("User:", "Beeper:", "U ser:", "Beep er:", "User ", "Beeper "): | |
text = text.replace(artifact, "") | |
text = text.strip() | |
if not text or len(text) < 3: | |
text = "I like robots and stories!" | |
if text[-1:] not in ".!?β\"'": | |
text += "." | |
return text[:200] | |
# ---------------------------- | |
# πΌοΈ Interface | |
# ---------------------------- | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown( | |
""" | |
# π€ Beeper β A Rose-based Tiny Language Model | |
Hello! I'm Beeper, a small language model trained with love and care. Please be patient with me β I'm still learning! π | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
model_dropdown = gr.Dropdown( | |
choices=list(MODEL_VERSIONS.keys()), | |
value="Beeper v3 (Multi-Concept)", # safer default | |
label="Select Beeper Version", | |
info="Choose which version of Beeper to chat with", | |
) | |
with gr.Column(scale=7): | |
version_info = gr.Markdown("**Current:** " + MODEL_VERSIONS["Beeper v3 (Multi-Concept)"]["description"]) | |
def update_version_info(version_name: str): | |
return f"**Current:** {MODEL_VERSIONS[version_name]['description']}" | |
model_dropdown.change( | |
fn=update_version_info, | |
inputs=[model_dropdown], | |
outputs=[version_info], | |
) | |
chatbot = gr.Chatbot(label="Chat with Beeper", height=400) | |
msg = gr.Textbox(label="Message", placeholder="Type your message here...") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
temperature_slider = gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature") | |
with gr.Column(scale=2): | |
top_k_slider = gr.Slider(1, 100, value=40, step=1, label="Top-k") | |
with gr.Column(scale=2): | |
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p") | |
with gr.Column(scale=2): | |
max_new_tokens_slider = gr.Slider(20, 512, value=128, step=1, label="Max new tokens") | |
with gr.Row(): | |
submit = gr.Button("Send", variant="primary") | |
clear = gr.Button("Clear") | |
gr.Examples( | |
examples=[ | |
["Hello Beeper! How are you today?"], | |
["Can you tell me a story about a robot?"], | |
["What do you like to do for fun?"], | |
["What makes you happy?"], | |
["Tell me about your dreams"], | |
], | |
inputs=msg, | |
) | |
def respond(message, chat_history, model_version, temperature, top_k, top_p, max_new_tokens): | |
if chat_history is None: | |
chat_history = [] | |
response = beeper_reply(message, chat_history, model_version, temperature, top_k, top_p, max_new_tokens) | |
chat_history.append((message, response)) | |
return "", chat_history | |
msg.submit( | |
respond, | |
[msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider, max_new_tokens_slider], | |
[msg, chatbot], | |
) | |
submit.click( | |
respond, | |
[msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider, max_new_tokens_slider], | |
[msg, chatbot], | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch() | |