Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,159 Bytes
bbb5633 037fce6 03c8105 4d83981 037fce6 5d8d3ef bbb5633 03c8105 6bede26 03c8105 6bede26 95569eb d7f01ca 95569eb 4360288 d7f01ca 95569eb 4360288 95569eb 4360288 6bede26 d7f01ca 6bede26 bbb5633 03c8105 bbb5633 03c8105 6bede26 4d83981 bbb5633 03c8105 037fce6 4360288 037fce6 bbb5633 4d83981 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 4d83981 bbb5633 95569eb bbb5633 95569eb 6bede26 037fce6 bbb5633 03c8105 bbb5633 03c8105 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 4360288 bbb5633 03c8105 bbb5633 03c8105 bbb5633 03c8105 bbb5633 03c8105 bbb5633 037fce6 03c8105 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 95569eb bbb5633 6bede26 95569eb bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 0d5344f bbb5633 9864aee 0d5344f bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 bbb5633 6bede26 037fce6 bbb5633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# app.py
# --------------------------------------------------------------------------------------------------
# Gradio app for Beeper
# - Loads released safetensors + tokenizer from Hugging Face
# - Auto-sizes pentachora banks to match checkpoints (across Beeper v1..v4)
# - Generation uses same knobs & penalties as training script
# --------------------------------------------------------------------------------------------------
import gradio as gr
import torch
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file as load_safetensors
from beeper_model import BeeperRoseGPT, generate, prepare_model_for_state_dict
# ----------------------------
# 🔧 Model versions configuration
# ----------------------------
MODEL_VERSIONS = {
"Beeper v4 (Advanced)": {
"repo_id": "AbstractPhil/beeper-rose-v4",
"model_file": "beeper_final.safetensors",
"description": "Beeper v4 with nearly 40% the full corpus training - the most capable version currently."
},
"Beeper v3 (Multi-Concept)": {
"repo_id": "AbstractPhil/beeper-rose-v3",
"model_file": "beeper_final.safetensors",
"description": "Beeper v3 with 30+ epochs including reasoning, math, and ethics"
},
"Beeper v2 (Extended)": {
"repo_id": "AbstractPhil/beeper-rose-v2",
"model_file": "beeper_final.safetensors",
"description": "Beeper v2 with extended training (~15 epochs)"
},
"Beeper v1 (Original)": {
"repo_id": "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512",
"model_file": "beeper_rose.safetensors",
"description": "Original Beeper trained on TinyStories"
},
}
# Base configuration (matches training defaults)
CONFIG = {
"context": 512,
"vocab_size": 8192,
"dim": 512,
"n_heads": 8,
"n_layers": 6,
"mlp_ratio": 4.0,
"temperature": 0.9,
"top_k": 40,
"top_p": 0.9,
"repetition_penalty": 1.10,
"presence_penalty": 0.6,
"frequency_penalty": 0.0,
"resid_dropout": 0.1,
"dropout": 0.0,
"grad_checkpoint": False,
# tokenizer_path not needed here; we load tokenizer.json from the HF repo
}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Globals (kept simple for a single process Gradio app)
infer: BeeperRoseGPT | None = None
tok: Tokenizer | None = None
current_version: str | None = None
def load_model_version(version_name: str) -> str:
"""
Download the checkpoint and tokenizer, build model, ensure pentachora sizes match,
then strictly load weights. Robust to v1/v2 (no pentas) and v3/v4 (with pentas).
"""
global infer, tok, current_version
if current_version == version_name and infer is not None and tok is not None:
return f"Already loaded: {version_name}"
version_info = MODEL_VERSIONS[version_name]
try:
# Download artifacts
model_file = hf_hub_download(
repo_id=version_info["repo_id"],
filename=version_info["model_file"]
)
tokenizer_file = hf_hub_download(
repo_id=version_info["repo_id"],
filename="tokenizer.json"
)
# Load state dict on CPU, inspect pentachora shapes if present
state_dict = load_safetensors(model_file, device="cpu")
# Build model & pre-create pentachora if needed
m = BeeperRoseGPT(CONFIG).to(device)
prepare_model_for_state_dict(m, state_dict, device=device)
# Try strict load first; if shapes drift (rare), fallback to non-strict
try:
missing, unexpected = m.load_state_dict(state_dict, strict=True)
# PyTorch returns NamedTuple; report counts
_msg = f"strict load ok | missing={len(missing)} unexpected={len(unexpected)}"
except Exception as e:
_msg = f"strict load failed ({e}); trying non-strict…"
# Non-strict load for very old snapshots
m.load_state_dict(state_dict, strict=False)
m.eval()
# Tokenizer
t = Tokenizer.from_file(tokenizer_file)
# Swap globals
infer, tok = m, t
current_version = version_name
return f"Successfully loaded: {version_name} ({_msg})"
except Exception as e:
infer = None
tok = None
current_version = None
return f"Error loading {version_name}: {str(e)}"
# Load default on startup — prefer v4, fallback to v3
try:
load_status = load_model_version("Beeper v4 (Advanced)")
if "Error" in load_status:
print(f"v4 not ready yet: {load_status}")
load_status = load_model_version("Beeper v3 (Multi-Concept)")
except Exception as _:
load_status = load_model_version("Beeper v3 (Multi-Concept)")
print(load_status)
# ----------------------------
# 💬 Chat wrapper
# ----------------------------
def beeper_reply(
message: str,
history: list[tuple[str, str]] | None,
model_version: str,
temperature: float | None,
top_k: int | None,
top_p: float | None,
max_new_tokens: int = 80
) -> str:
global infer, tok, current_version
# Hot-swap versions if the dropdown changed
if model_version != current_version:
status = load_model_version(model_version)
if "Error" in status:
return f"⚠️ {status}"
if infer is None or tok is None:
return "⚠️ Model not loaded. Please select a version and try again."
# Light prompting heuristics (consistent with your example)
m = message.strip()
if "?" in m:
prompt = f"Q: {m}\nA:"
elif m.lower() in {"hi", "hello", "hey"}:
prompt = 'The little robot said hello. She said, "'
elif "story" in m.lower():
prompt = "Once upon a time, there was a robot. "
else:
prompt = m + ". "
# Generate
text = generate(
model=infer,
tok=tok,
cfg=CONFIG,
prompt=prompt,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature) if temperature is not None else None,
top_k=int(top_k) if top_k is not None else None,
top_p=float(top_p) if top_p is not None else None,
repetition_penalty=1.10,
presence_penalty=0.8,
frequency_penalty=0.1,
device=device,
detokenize=True,
)
# Strip prompt echoes & artifacts
if text.startswith(prompt):
text = text[len(prompt):]
text = text.replace("Q:", "").replace("A:", "")
lines = [ln.strip() for ln in text.splitlines() if ln.strip()]
if lines:
text = lines[0]
# If user message echoed at head, trim after first occurrence
head = m[:20].lower()
if text.lower().startswith(head):
idx = text.lower().find(head)
text = text[idx + len(head):].strip() or text
for artifact in ("User:", "Beeper:", "U ser:", "Beep er:", "User ", "Beeper "):
text = text.replace(artifact, "")
text = text.strip()
if not text or len(text) < 3:
text = "I like robots and stories!"
if text[-1:] not in ".!?”\"'":
text += "."
return text[:200]
# ----------------------------
# 🖼️ Interface
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🤖 Beeper — A Rose-based Tiny Language Model
Hello! I'm Beeper, a small language model trained with love and care. Please be patient with me — I'm still learning! 💕
"""
)
with gr.Row():
with gr.Column(scale=3):
model_dropdown = gr.Dropdown(
choices=list(MODEL_VERSIONS.keys()),
value="Beeper v3 (Multi-Concept)", # safer default
label="Select Beeper Version",
info="Choose which version of Beeper to chat with",
)
with gr.Column(scale=7):
version_info = gr.Markdown("**Current:** " + MODEL_VERSIONS["Beeper v3 (Multi-Concept)"]["description"])
def update_version_info(version_name: str):
return f"**Current:** {MODEL_VERSIONS[version_name]['description']}"
model_dropdown.change(
fn=update_version_info,
inputs=[model_dropdown],
outputs=[version_info],
)
chatbot = gr.Chatbot(label="Chat with Beeper", height=400)
msg = gr.Textbox(label="Message", placeholder="Type your message here...")
with gr.Row():
with gr.Column(scale=2):
temperature_slider = gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature")
with gr.Column(scale=2):
top_k_slider = gr.Slider(1, 100, value=40, step=1, label="Top-k")
with gr.Column(scale=2):
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
with gr.Column(scale=2):
max_new_tokens_slider = gr.Slider(20, 512, value=128, step=1, label="Max new tokens")
with gr.Row():
submit = gr.Button("Send", variant="primary")
clear = gr.Button("Clear")
gr.Examples(
examples=[
["Hello Beeper! How are you today?"],
["Can you tell me a story about a robot?"],
["What do you like to do for fun?"],
["What makes you happy?"],
["Tell me about your dreams"],
],
inputs=msg,
)
def respond(message, chat_history, model_version, temperature, top_k, top_p, max_new_tokens):
if chat_history is None:
chat_history = []
response = beeper_reply(message, chat_history, model_version, temperature, top_k, top_p, max_new_tokens)
chat_history.append((message, response))
return "", chat_history
msg.submit(
respond,
[msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider, max_new_tokens_slider],
[msg, chatbot],
)
submit.click(
respond,
[msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider, max_new_tokens_slider],
[msg, chatbot],
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch()
|