File size: 10,159 Bytes
bbb5633
 
 
 
 
 
 
037fce6
03c8105
 
 
4d83981
037fce6
5d8d3ef
bbb5633
03c8105
6bede26
03c8105
6bede26
95569eb
 
d7f01ca
95569eb
 
 
4360288
d7f01ca
95569eb
4360288
 
 
95569eb
4360288
 
6bede26
 
d7f01ca
6bede26
 
 
 
bbb5633
 
03c8105
 
 
 
 
 
 
 
 
bbb5633
03c8105
 
6bede26
4d83981
 
bbb5633
03c8105
037fce6
4360288
037fce6
bbb5633
 
 
 
 
4d83981
bbb5633
 
 
 
 
6bede26
bbb5633
 
6bede26
bbb5633
6bede26
bbb5633
6bede26
bbb5633
6bede26
bbb5633
6bede26
 
 
bbb5633
6bede26
 
bbb5633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bede26
bbb5633
 
6bede26
bbb5633
 
 
6bede26
4d83981
bbb5633
 
95569eb
 
 
 
 
bbb5633
95569eb
6bede26
037fce6
bbb5633
03c8105
bbb5633
03c8105
bbb5633
 
 
 
 
 
 
 
 
6bede26
bbb5633
 
6bede26
 
 
 
bbb5633
6bede26
 
bbb5633
 
 
 
 
 
 
 
4360288
 
bbb5633
 
 
 
03c8105
 
bbb5633
03c8105
bbb5633
 
 
 
 
 
 
03c8105
bbb5633
03c8105
bbb5633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
037fce6
03c8105
 
 
6bede26
 
 
bbb5633
 
6bede26
 
bbb5633
6bede26
 
 
 
bbb5633
6bede26
bbb5633
6bede26
 
bbb5633
 
 
 
 
6bede26
 
 
bbb5633
6bede26
bbb5633
 
95569eb
bbb5633
6bede26
 
 
 
 
 
 
95569eb
bbb5633
 
6bede26
 
 
bbb5633
6bede26
 
 
 
 
 
 
 
bbb5633
6bede26
bbb5633
0d5344f
bbb5633
9864aee
0d5344f
bbb5633
6bede26
bbb5633
6bede26
bbb5633
 
 
6bede26
 
bbb5633
 
 
6bede26
 
037fce6
 
bbb5633
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# app.py
# --------------------------------------------------------------------------------------------------
# Gradio app for Beeper
# - Loads released safetensors + tokenizer from Hugging Face
# - Auto-sizes pentachora banks to match checkpoints (across Beeper v1..v4)
# - Generation uses same knobs & penalties as training script
# --------------------------------------------------------------------------------------------------
import gradio as gr
import torch
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file as load_safetensors

from beeper_model import BeeperRoseGPT, generate, prepare_model_for_state_dict

# ----------------------------
# 🔧 Model versions configuration
# ----------------------------
MODEL_VERSIONS = {
    "Beeper v4 (Advanced)": {
        "repo_id": "AbstractPhil/beeper-rose-v4",
        "model_file": "beeper_final.safetensors",
        "description": "Beeper v4 with nearly 40% the full corpus training - the most capable version currently."
    },
    "Beeper v3 (Multi-Concept)": {
        "repo_id": "AbstractPhil/beeper-rose-v3",
        "model_file": "beeper_final.safetensors",
        "description": "Beeper v3 with 30+ epochs including reasoning, math, and ethics"
    },
    "Beeper v2 (Extended)": {
        "repo_id": "AbstractPhil/beeper-rose-v2",
        "model_file": "beeper_final.safetensors",
        "description": "Beeper v2 with extended training (~15 epochs)"
    },
    "Beeper v1 (Original)": {
        "repo_id": "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512",
        "model_file": "beeper_rose.safetensors",
        "description": "Original Beeper trained on TinyStories"
    },
}

# Base configuration (matches training defaults)
CONFIG = {
    "context": 512,
    "vocab_size": 8192,
    "dim": 512,
    "n_heads": 8,
    "n_layers": 6,
    "mlp_ratio": 4.0,
    "temperature": 0.9,
    "top_k": 40,
    "top_p": 0.9,
    "repetition_penalty": 1.10,
    "presence_penalty": 0.6,
    "frequency_penalty": 0.0,
    "resid_dropout": 0.1,
    "dropout": 0.0,
    "grad_checkpoint": False,
    # tokenizer_path not needed here; we load tokenizer.json from the HF repo
}

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Globals (kept simple for a single process Gradio app)
infer: BeeperRoseGPT | None = None
tok: Tokenizer | None = None
current_version: str | None = None


def load_model_version(version_name: str) -> str:
    """
    Download the checkpoint and tokenizer, build model, ensure pentachora sizes match,
    then strictly load weights. Robust to v1/v2 (no pentas) and v3/v4 (with pentas).
    """
    global infer, tok, current_version

    if current_version == version_name and infer is not None and tok is not None:
        return f"Already loaded: {version_name}"

    version_info = MODEL_VERSIONS[version_name]

    try:
        # Download artifacts
        model_file = hf_hub_download(
            repo_id=version_info["repo_id"],
            filename=version_info["model_file"]
        )
        tokenizer_file = hf_hub_download(
            repo_id=version_info["repo_id"],
            filename="tokenizer.json"
        )

        # Load state dict on CPU, inspect pentachora shapes if present
        state_dict = load_safetensors(model_file, device="cpu")

        # Build model & pre-create pentachora if needed
        m = BeeperRoseGPT(CONFIG).to(device)
        prepare_model_for_state_dict(m, state_dict, device=device)

        # Try strict load first; if shapes drift (rare), fallback to non-strict
        try:
            missing, unexpected = m.load_state_dict(state_dict, strict=True)
            # PyTorch returns NamedTuple; report counts
            _msg = f"strict load ok | missing={len(missing)} unexpected={len(unexpected)}"
        except Exception as e:
            _msg = f"strict load failed ({e}); trying non-strict…"
            # Non-strict load for very old snapshots
            m.load_state_dict(state_dict, strict=False)

        m.eval()

        # Tokenizer
        t = Tokenizer.from_file(tokenizer_file)

        # Swap globals
        infer, tok = m, t
        current_version = version_name
        return f"Successfully loaded: {version_name} ({_msg})"

    except Exception as e:
        infer = None
        tok = None
        current_version = None
        return f"Error loading {version_name}: {str(e)}"


# Load default on startup — prefer v4, fallback to v3
try:
    load_status = load_model_version("Beeper v4 (Advanced)")
    if "Error" in load_status:
        print(f"v4 not ready yet: {load_status}")
        load_status = load_model_version("Beeper v3 (Multi-Concept)")
except Exception as _:
    load_status = load_model_version("Beeper v3 (Multi-Concept)")
print(load_status)


# ----------------------------
# 💬 Chat wrapper
# ----------------------------
def beeper_reply(
    message: str,
    history: list[tuple[str, str]] | None,
    model_version: str,
    temperature: float | None,
    top_k: int | None,
    top_p: float | None,
    max_new_tokens: int = 80
) -> str:
    global infer, tok, current_version

    # Hot-swap versions if the dropdown changed
    if model_version != current_version:
        status = load_model_version(model_version)
        if "Error" in status:
            return f"⚠️ {status}"

    if infer is None or tok is None:
        return "⚠️ Model not loaded. Please select a version and try again."

    # Light prompting heuristics (consistent with your example)
    m = message.strip()
    if "?" in m:
        prompt = f"Q: {m}\nA:"
    elif m.lower() in {"hi", "hello", "hey"}:
        prompt = 'The little robot said hello. She said, "'
    elif "story" in m.lower():
        prompt = "Once upon a time, there was a robot. "
    else:
        prompt = m + ". "

    # Generate
    text = generate(
        model=infer,
        tok=tok,
        cfg=CONFIG,
        prompt=prompt,
        max_new_tokens=int(max_new_tokens),
        temperature=float(temperature) if temperature is not None else None,
        top_k=int(top_k) if top_k is not None else None,
        top_p=float(top_p) if top_p is not None else None,
        repetition_penalty=1.10,
        presence_penalty=0.8,
        frequency_penalty=0.1,
        device=device,
        detokenize=True,
    )

    # Strip prompt echoes & artifacts
    if text.startswith(prompt):
        text = text[len(prompt):]
    text = text.replace("Q:", "").replace("A:", "")

    lines = [ln.strip() for ln in text.splitlines() if ln.strip()]
    if lines:
        text = lines[0]

    # If user message echoed at head, trim after first occurrence
    head = m[:20].lower()
    if text.lower().startswith(head):
        idx = text.lower().find(head)
        text = text[idx + len(head):].strip() or text

    for artifact in ("User:", "Beeper:", "U ser:", "Beep er:", "User ", "Beeper "):
        text = text.replace(artifact, "")

    text = text.strip()
    if not text or len(text) < 3:
        text = "I like robots and stories!"

    if text[-1:] not in ".!?”\"'":
        text += "."

    return text[:200]


# ----------------------------
# 🖼️ Interface
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # 🤖 Beeper — A Rose-based Tiny Language Model
        Hello! I'm Beeper, a small language model trained with love and care. Please be patient with me — I'm still learning! 💕
        """
    )

    with gr.Row():
        with gr.Column(scale=3):
            model_dropdown = gr.Dropdown(
                choices=list(MODEL_VERSIONS.keys()),
                value="Beeper v3 (Multi-Concept)",  # safer default
                label="Select Beeper Version",
                info="Choose which version of Beeper to chat with",
            )
        with gr.Column(scale=7):
            version_info = gr.Markdown("**Current:** " + MODEL_VERSIONS["Beeper v3 (Multi-Concept)"]["description"])

    def update_version_info(version_name: str):
        return f"**Current:** {MODEL_VERSIONS[version_name]['description']}"

    model_dropdown.change(
        fn=update_version_info,
        inputs=[model_dropdown],
        outputs=[version_info],
    )

    chatbot = gr.Chatbot(label="Chat with Beeper", height=400)
    msg = gr.Textbox(label="Message", placeholder="Type your message here...")

    with gr.Row():
        with gr.Column(scale=2):
            temperature_slider = gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature")
        with gr.Column(scale=2):
            top_k_slider = gr.Slider(1, 100, value=40, step=1, label="Top-k")
        with gr.Column(scale=2):
            top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
        with gr.Column(scale=2):
            max_new_tokens_slider = gr.Slider(20, 512, value=128, step=1, label="Max new tokens")

    with gr.Row():
        submit = gr.Button("Send", variant="primary")
        clear = gr.Button("Clear")

    gr.Examples(
        examples=[
            ["Hello Beeper! How are you today?"],
            ["Can you tell me a story about a robot?"],
            ["What do you like to do for fun?"],
            ["What makes you happy?"],
            ["Tell me about your dreams"],
        ],
        inputs=msg,
    )

    def respond(message, chat_history, model_version, temperature, top_k, top_p, max_new_tokens):
        if chat_history is None:
            chat_history = []
        response = beeper_reply(message, chat_history, model_version, temperature, top_k, top_p, max_new_tokens)
        chat_history.append((message, response))
        return "", chat_history

    msg.submit(
        respond,
        [msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider, max_new_tokens_slider],
        [msg, chatbot],
    )
    submit.click(
        respond,
        [msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider, max_new_tokens_slider],
        [msg, chatbot],
    )
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.launch()