Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from beeper_model import BeeperRoseGPT, generate # assumed modular split | |
from tokenizers import Tokenizer | |
from huggingface_hub import hf_hub_download | |
# ---------------------------- | |
# 🔧 Load Model and Tokenizer | |
# ---------------------------- | |
config = { | |
"context": 512, | |
"vocab_size": 8192, | |
"dim": 512, | |
"n_heads": 8, | |
"n_layers": 6, | |
"mlp_ratio": 4.0, | |
"temperature": 0.9, | |
"top_k": 40, | |
"top_p": 0.9, | |
"repetition_penalty": 1.1, | |
"presence_penalty": 0.6, | |
"frequency_penalty": 0.0, | |
"tokenizer_path": "beeper.tokenizer.json" | |
} | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load weights from Hugging Face repo if not available locally | |
repo_id = "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512" | |
model_file = hf_hub_download(repo_id=repo_id, filename="beeper_final.safetensors") | |
tokenizer_file = hf_hub_download(repo_id=repo_id, filename="tokenizer.json") | |
infer = BeeperRoseGPT(config).to(device) | |
infer.load_state_dict(torch.load(model_file, map_location=device)) | |
infer.eval() | |
tok = Tokenizer.from_file(tokenizer_file) | |
# ---------------------------- | |
# 💬 Gradio Chat Wrapper | |
# ---------------------------- | |
def beeper_reply(message, history, temperature, top_k, top_p): | |
prompt = "\n".join([f"User: {h[0]}\nBeeper: {h[1]}" for h in history if h[0] and h[1]]) | |
prompt += f"\nUser: {message}\nBeeper:" | |
out = generate( | |
model=infer, | |
tok=tok, | |
cfg=config, | |
prompt=prompt, | |
max_new_tokens=128, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=config["repetition_penalty"], | |
presence_penalty=config["presence_penalty"], | |
frequency_penalty=config["frequency_penalty"], | |
device=device, | |
detokenize=True | |
) | |
yield out | |
# ---------------------------- | |
# 🖼️ Interface | |
# ---------------------------- | |
demo = gr.ChatInterface( | |
beeper_reply, | |
additional_inputs=[ | |
gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature"), | |
gr.Slider(1, 100, value=40, step=1, label="Top-k"), | |
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"), | |
], | |
chatbot=gr.Chatbot(label="Hello I'm Beeper (Rose-based LLM)! Please be friendly I don't know very much yet!") | |
) | |
if __name__ == "__main__": | |
demo.launch() | |