meet-beeper / app.py
AbstractPhil's picture
Update app.py
03c8105 verified
raw
history blame
2.37 kB
import gradio as gr
import torch
from beeper_model import BeeperRoseGPT, generate # assumed modular split
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
# ----------------------------
# 🔧 Load Model and Tokenizer
# ----------------------------
config = {
"context": 512,
"vocab_size": 8192,
"dim": 512,
"n_heads": 8,
"n_layers": 6,
"mlp_ratio": 4.0,
"temperature": 0.9,
"top_k": 40,
"top_p": 0.9,
"repetition_penalty": 1.1,
"presence_penalty": 0.6,
"frequency_penalty": 0.0,
"tokenizer_path": "beeper.tokenizer.json"
}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load weights from Hugging Face repo if not available locally
repo_id = "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512"
model_file = hf_hub_download(repo_id=repo_id, filename="beeper_final.safetensors")
tokenizer_file = hf_hub_download(repo_id=repo_id, filename="tokenizer.json")
infer = BeeperRoseGPT(config).to(device)
infer.load_state_dict(torch.load(model_file, map_location=device))
infer.eval()
tok = Tokenizer.from_file(tokenizer_file)
# ----------------------------
# 💬 Gradio Chat Wrapper
# ----------------------------
def beeper_reply(message, history, temperature, top_k, top_p):
prompt = "\n".join([f"User: {h[0]}\nBeeper: {h[1]}" for h in history if h[0] and h[1]])
prompt += f"\nUser: {message}\nBeeper:"
out = generate(
model=infer,
tok=tok,
cfg=config,
prompt=prompt,
max_new_tokens=128,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=config["repetition_penalty"],
presence_penalty=config["presence_penalty"],
frequency_penalty=config["frequency_penalty"],
device=device,
detokenize=True
)
yield out
# ----------------------------
# 🖼️ Interface
# ----------------------------
demo = gr.ChatInterface(
beeper_reply,
additional_inputs=[
gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature"),
gr.Slider(1, 100, value=40, step=1, label="Top-k"),
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"),
],
chatbot=gr.Chatbot(label="Hello I'm Beeper (Rose-based LLM)! Please be friendly I don't know very much yet!")
)
if __name__ == "__main__":
demo.launch()