Spaces:
Paused
Paused
import streamlit as st | |
import csv | |
import chromadb | |
from chromadb.utils import embedding_functions | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from transformers import pipeline | |
from langchain.llms import HuggingFacePipeline | |
# Instantiate chromadb instance. Data is stored on disk (a folder named 'my_vectordb' will be created in the same folder as this file). | |
chroma_client = chromadb.PersistentClient(path="vector_db") | |
# Select the embedding model to use. | |
# List of model names can be found here https://www.sbert.net/docs/pretrained_models.html | |
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-mpnet-base-v2") | |
# Use this to delete the database | |
# chroma_client.delete_collection(name="my_collection") | |
# Create the collection, aka vector database. Or, if database already exist, then use it. Specify the model that we want to use to do the embedding. | |
collection = chroma_client.get_or_create_collection(name="my_collection", embedding_function=sentence_transformer_ef) | |
# Add the data to the collection | |
# collection.add( | |
# documents=documents, | |
# metadatas=metadatas, | |
# ids=ids | |
# ) | |
# Streamlit app layout | |
st.title("ChromaDB and HuggingFace Pipeline Integration") | |
query = st.text_input("Enter your query:", value="director") | |
if st.button("Search"): | |
results = collection.query( | |
query_texts=[query], | |
n_results=1, | |
include=['documents', 'distances', 'metadatas'] | |
) | |
st.write("Query Results:") | |
st.write(results['metadatas']) | |
if results['documents']: | |
context = results['documents'] | |
st.write("Context:") | |
st.write(context) | |
tokenizer = AutoTokenizer.from_pretrained("MBZUAI/LaMini-T5-738M") | |
model = AutoModelForSeq2SeqLM.from_pretrained("MBZUAI/LaMini-T5-738M") | |
pipe = pipeline( | |
"text2text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_length=512 | |
) | |
local_llm = HuggingFacePipeline(pipeline=pipe) | |
l = f""" | |
Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
{context} | |
Question: {query} | |
Helpful Answer: | |
""" | |
answer = local_llm(l) | |
st.write("Answer:") | |
st.write(answer) | |