Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from torch_geometric.data import Data | |
from torch_geometric.utils import from_networkx | |
import networkx as nx | |
# Usamos el modelo GCN previamente entrenado (podrías cambiar por GAT si lo prefieres) | |
model.eval() | |
def predict_mutagenicity(): | |
# Creamos un grafo de prueba simple (3 nodos conectados) | |
G = nx.Graph() | |
G.add_edges_from([(0, 1), (1, 2)]) | |
nx.set_node_attributes(G, {i: [1, 0, 0, 1, 0, 1, 0] for i in G.nodes}, "x") # vector ficticio | |
# Convertimos a objeto PyG | |
pyg_data = from_networkx(G) | |
pyg_data.x = torch.tensor(list(nx.get_node_attributes(G, 'x').values()), dtype=torch.float) | |
pyg_data.edge_index = pyg_data.edge_index | |
pyg_data.batch = torch.tensor([0] * pyg_data.num_nodes) | |
pyg_data = pyg_data.to(device) | |
with torch.no_grad(): | |
out = model(pyg_data.x, pyg_data.edge_index, pyg_data.batch) | |
pred = out.argmax(dim=1).item() | |
return "Mutagénico" if pred == 1 else "No mutagénico" | |
gr.Interface(fn=predict_mutagenicity, inputs=[], outputs="text", | |
title="Clasificador de Moléculas con GNN", | |
description="Demo simple de GCN sobre grafos moleculares (MUTAG)").launch() | |