Spaces:
Runtime error
Runtime error
File size: 1,071 Bytes
9dc172d fdcbdd8 9dc172d fdcbdd8 e0d86b8 fdcbdd8 552557d e0d86b8 fdcbdd8 e0d86b8 fdcbdd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from PIL import Image
import torch
from torchvision import transforms
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
# Cargar el modelo desde Hugging Face Hub
model = AutoModelForImageClassification.from_pretrained("AdrianRevi/Practica1Blindness")
extractor = AutoFeatureExtractor.from_pretrained("AdrianRevi/Practica1Blindness")
# Preprocesamiento
def predict(img: Image.Image):
inputs = extractor(images=img, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
labels = model.config.id2label
return {labels[i]: float(probs[i]) for i in range(len(labels))}
# Interfaz Gradio
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=3),
examples=["examples/20068.jpg", "examples/20084.jpg"],
title="Blindness Detection",
description="Sube una imagen del ojo para detectar el grado de ceguera.",
)
if __name__ == "__main__":
demo.launch()
|