GAIA_Agent / app.py
Delanoe Pirard
First commit
a23082c
raw
history blame
21.7 kB
import os
import logging
import mimetypes
from dotenv import load_dotenv
from typing import Any, List
import gradio as gr
import requests
import pandas as pd
from llama_index.core.agent.workflow import AgentWorkflow, ToolCallResult, ToolCall, AgentOutput
from llama_index.core.base.llms.types import ChatMessage, TextBlock, ImageBlock, AudioBlock
# Assuming agent initializers are in the same directory or a known path
# Adjust import paths if necessary based on deployment structure
try:
# Existing agents
from agents.image_analyzer_agent import initialize_image_analyzer_agent
from agents.reasoning_agent import initialize_reasoning_agent
from agents.text_analyzer_agent import initialize_text_analyzer_agent
from agents.code_agent import initialize_code_agent
from agents.math_agent import initialize_math_agent
from agents.planner_agent import initialize_planner_agent
from agents.research_agent import initialize_research_agent
from agents.role_agent import initialize_role_agent
from agents.verifier_agent import initialize_verifier_agent
# New agents
from agents.advanced_validation_agent import initialize_advanced_validation_agent
from agents.figure_interpretation_agent import initialize_figure_interpretation_agent
from agents.long_context_management_agent import initialize_long_context_management_agent
AGENT_IMPORT_PATH = "local"
except ImportError as e:
# Fallback for potential different structures (e.g., nested folder)
try:
from final_project.image_analyzer_agent import initialize_image_analyzer_agent
from final_project.reasoning_agent import initialize_reasoning_agent
from final_project.text_analyzer_agent import initialize_text_analyzer_agent
from final_project.code_agent import initialize_code_agent
from final_project.math_agent import initialize_math_agent
from final_project.planner_agent import initialize_planner_agent
from final_project.research_agent import initialize_research_agent
from final_project.role_agent import initialize_role_agent
from final_project.verifier_agent import initialize_verifier_agent
from final_project.advanced_validation_agent import initialize_advanced_validation_agent
from final_project.figure_interpretation_agent import initialize_figure_interpretation_agent
from final_project.long_context_management_agent import initialize_long_context_management_agent
AGENT_IMPORT_PATH = "final_project"
except ImportError as e2:
print(f"Import Error: Could not find agent modules. Tried local and final_project paths. Error: {e2}")
# Set initializers to None or raise error to prevent app start
initialize_image_analyzer_agent = None
# ... set all others to None ...
raise RuntimeError(f"Failed to import agent modules: {e2}")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
load_dotenv() # Load environment variables from .env file
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Constants ---
DEFAULT_API_URL = os.getenv("GAIA_API_URL", "https://agents-course-unit4-scoring.hf.space")
# --- Agent Initialization (Singleton Pattern) ---
# Initialize the agent workflow once
AGENT_WORKFLOW = None
try:
logger.info(f"Initializing GAIA Multi-Agent Workflow (import path: {AGENT_IMPORT_PATH})...")
# Existing agents
role_agent = initialize_role_agent()
code_agent = initialize_code_agent()
math_agent = initialize_math_agent()
planner_agent = initialize_planner_agent()
research_agent = initialize_research_agent()
text_analyzer_agent = initialize_text_analyzer_agent()
verifier_agent = initialize_verifier_agent()
image_analyzer_agent = initialize_image_analyzer_agent()
reasoning_agent = initialize_reasoning_agent()
# New agents
advanced_validation_agent = initialize_advanced_validation_agent()
figure_interpretation_agent = initialize_figure_interpretation_agent()
long_context_management_agent = initialize_long_context_management_agent()
# Check if all agents initialized successfully
all_agents = [
code_agent, role_agent, math_agent, planner_agent, research_agent,
text_analyzer_agent, image_analyzer_agent, verifier_agent, reasoning_agent,
advanced_validation_agent, figure_interpretation_agent, long_context_management_agent
]
if not all(all_agents):
raise RuntimeError("One or more agents failed to initialize.")
AGENT_WORKFLOW = AgentWorkflow(
agents=all_agents,
root_agent="planner_agent" # Keep planner as root as per plan
)
logger.info("GAIA Multi-Agent Workflow initialized successfully.")
except Exception as e:
logger.error(f"FATAL: Error initializing agent workflow: {e}", exc_info=True)
# AGENT_WORKFLOW remains None, BasicAgent init will fail
# --- Basic Agent Definition (Wrapper for Workflow) ---
class BasicAgent:
def __init__(self, workflow: AgentWorkflow):
if workflow is None:
logger.error("AgentWorkflow is None, initialization likely failed.")
raise RuntimeError("AgentWorkflow failed to initialize. Check logs for details.")
self.agent_workflow = workflow
logger.info("BasicAgent wrapper initialized.")
async def __call__(self, question: str | ChatMessage) -> Any:
if isinstance(question, ChatMessage):
log_question = str(question.blocks[0].text)[:100] if question.blocks and hasattr(question.blocks[0], "text") else str(question)[:100]
logger.info(f"Agent received question (first 100 chars): {log_question}...")
else:
logger.info(f"Agent received question (first 100 chars): {question[:100]}...")
handler = self.agent_workflow.run(user_msg=question)
current_agent = None
async for event in handler.stream_events():
if (
hasattr(event, "current_agent_name")
and event.current_agent_name != current_agent
):
current_agent = event.current_agent_name
logger.info(f"{'=' * 50}\n")
logger.info(f"{'=' * 50}\n")
# Optional detailed logging (uncomment if needed)
# from llama_index.core.agent.runner.base import AgentStream, AgentInput
# if isinstance(event, AgentStream):
# if event.delta:
# logger.debug(f"STREAM: {event.delta}") # Use debug level
# elif isinstance(event, AgentInput):
# logger.debug(f"📥 Input: {event.input}") # Use debug level
elif isinstance(event, AgentOutput):
if event.response and hasattr(event.response, 'content') and event.response.content:
logger.info(f"📤 Output: {event.response.content}")
if event.tool_calls:
logger.info(
f"🛠️ Planning to use tools: {[call.tool_name for call in event.tool_calls]}"
)
elif isinstance(event, ToolCallResult):
logger.info(f"🔧 Tool Result ({event.tool_name}):")
logger.info(f" Arguments: {event.tool_kwargs}")
# Limit output logging length if potentially very long
output_str = str(event.tool_output)
logger.info(f" Output: {output_str[:500]}{'...' if len(output_str) > 500 else ''}")
elif isinstance(event, ToolCall):
logger.info(f"🔨 Calling Tool: {event.tool_name}")
logger.info(f" With arguments: {event.tool_kwargs}")
answer = await handler
final_content = answer.response.content if hasattr(answer, 'response') and hasattr(answer.response, 'content') else str(answer)
logger.info(f"Agent returning final answer: {final_content[:500]}{'...' if len(final_content) > 500 else ''}")
return answer.response # Return the actual response object expected by Gradio
# --- Helper Functions for run_and_submit_all ---
async def fetch_questions(questions_url: str) -> List[dict] | None:
"""Fetches questions from the GAIA benchmark API."""
logger.info(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=30) # Increased timeout
response.raise_for_status()
questions_data = response.json()
if not questions_data:
logger.warning("Fetched questions list is empty.")
return None
logger.info(f"Fetched {len(questions_data)} questions.")
return questions_data
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching questions: {e}", exc_info=True)
return None
except requests.exceptions.JSONDecodeError as e:
logger.error(f"Error decoding JSON response from questions endpoint: {e}", exc_info=True)
logger.error(f"Response text: {response.text[:500]}")
return None
except Exception as e:
logger.error(f"An unexpected error occurred fetching questions: {e}", exc_info=True)
return None
async def process_question(agent: BasicAgent, item: dict, base_fetch_file_url: str) -> dict | None:
"""Processes a single question item using the agent."""
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name")
if not task_id or question_text is None:
logger.warning(f"Skipping item with missing task_id or question: {item}")
return None
message: ChatMessage
if file_name:
fetch_file_url = f"{base_fetch_file_url}/{task_id}"
logger.info(f"Fetching file '{file_name}' for task {task_id} from {fetch_file_url}")
try:
response = requests.get(fetch_file_url, timeout=60) # Increased timeout for files
response.raise_for_status()
mime_type, _ = mimetypes.guess_type(file_name)
logger.info(f"File '{file_name}' MIME type guessed as: {mime_type}")
file_block: TextBlock | ImageBlock | AudioBlock | None = None
if mime_type:
# Prioritize specific extensions for text-like content
text_extensions = (
".txt", ".csv", ".json", ".xml", ".yaml", ".yml", ".ini", ".cfg", ".toml", ".log", ".properties",
".html", ".htm", ".xhtml", ".css", ".scss", ".sass", ".less", ".svg", ".md", ".rst",
".py", ".js", ".java", ".c", ".cpp", ".h", ".hpp", ".cs", ".go", ".php", ".rb", ".swift", ".kt",
".sh", ".bat", ".ipynb", ".Rmd", ".tex" # Added more code/markup types
)
if mime_type.startswith('text/') or file_name.lower().endswith(text_extensions):
try:
file_content = response.content.decode('utf-8') # Try UTF-8 first
except UnicodeDecodeError:
try:
file_content = response.content.decode('latin-1') # Fallback
logger.warning(f"Decoded file {file_name} using latin-1 fallback.")
except Exception as decode_err:
logger.error(f"Could not decode file {file_name}: {decode_err}")
file_content = f"[Error: Could not decode file content for {file_name}]"
file_block = TextBlock(block_type="text", text=file_content)
elif mime_type.startswith('image/'):
# Pass image content directly for multi-modal models
file_block = ImageBlock(url=fetch_file_url, image=response.content)
elif mime_type.startswith('audio/'):
# Pass audio content directly
file_block = AudioBlock(url=fetch_file_url, audio=response.content)
elif mime_type == 'application/pdf':
# PDF: Pass a text block indicating the URL for agents to handle
logger.info(f"PDF file detected: {file_name}. Passing reference URL.")
file_block = TextBlock(text=f"[Reference PDF file available at: {fetch_file_url}]")
# Add handling for other types like video if needed
# elif mime_type.startswith('video/'):
# logger.info(f"Video file detected: {file_name}. Passing reference URL.")
# file_block = TextBlock(text=f"[Reference Video file available at: {fetch_file_url}]")
if file_block:
blocks = [TextBlock(text=question_text), file_block]
message = ChatMessage(role="user", blocks=blocks)
else:
logger.warning(f"File type for '{file_name}' (MIME: {mime_type}) not directly supported for block creation or no block created (e.g., unsupported). Passing text question only.")
message = ChatMessage(role="user", blocks=[TextBlock(text=question_text)])
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching file for task {task_id}: {e}", exc_info=True)
return {"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: Failed to fetch file {file_name} - {e}"}
except Exception as e:
logger.error(f"Error processing file for task {task_id}: {e}", exc_info=True)
return {"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: Failed to process file {file_name} - {e}"}
else:
# No file associated with the question
message = ChatMessage(role="user", blocks=[TextBlock(text=question_text)])
# Run the agent on the prepared message
try:
logger.info(f"Running agent on task {task_id}...")
submitted_answer_response = await agent(message)
# Extract content safely
submitted_answer = submitted_answer_response.content if hasattr(submitted_answer_response, 'content') else str(submitted_answer_response)
logger.info(f"👍 Agent submitted answer for task {task_id}: {submitted_answer[:200]}{'...' if len(submitted_answer) > 200 else ''}")
return {"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}
except Exception as e:
logger.error(f"Error running agent on task {task_id}: {e}", exc_info=True)
return {"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}
async def submit_answers(submit_url: str, username: str, agent_code: str, results: List[dict]) -> tuple[str, pd.DataFrame]:
"""Submits the collected answers to the GAIA benchmark API."""
answers_payload = [
{"task_id": r["Task ID"], "submitted_answer": r["Submitted Answer"]}
for r in results if "Submitted Answer" in r and not str(r["Submitted Answer"]).startswith("AGENT ERROR:")
]
if not answers_payload:
logger.warning("Agent did not produce any valid answers to submit.")
results_df = pd.DataFrame(results)
return "Agent did not produce any valid answers to submit.", results_df
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
logger.info(status_update)
logger.info(f"Submitting to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=120) # Increased timeout
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
logger.info("Submission successful.")
results_df = pd.DataFrame(results)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
logger.error(status_message)
results_df = pd.DataFrame(results)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
logger.error(status_message)
results_df = pd.DataFrame(results)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
logger.error(status_message)
results_df = pd.DataFrame(results)
return status_message, results_df
except Exception as e:
status_message = f"Submission Failed: An unexpected error occurred during submission - {e}"
logger.error(status_message, exc_info=True)
results_df = pd.DataFrame(results)
return status_message, results_df
# --- Main Function for Batch Processing ---
async def run_and_submit_all(
username: str,
agent_code: str,
api_url: str = DEFAULT_API_URL,
level: int = 1,
max_questions: int = 0, # 0 means all questions for the level
progress=gr.Progress(track_tqdm=True)
) -> tuple[str, pd.DataFrame]:
"""Fetches all questions for a level, runs the agent, and submits answers."""
if not AGENT_WORKFLOW:
error_msg = "Agent Workflow is not initialized. Cannot run benchmark."
logger.error(error_msg)
return error_msg, pd.DataFrame()
if not username or not username.strip():
error_msg = "Username cannot be empty."
logger.error(error_msg)
return error_msg, pd.DataFrame()
questions_url = f"{api_url}/questions?level={level}"
submit_url = f"{api_url}/submit"
base_fetch_file_url = f"{api_url}/get_file"
questions = await fetch_questions(questions_url)
if questions is None:
error_msg = f"Failed to fetch questions for level {level}. Check logs."
return error_msg, pd.DataFrame()
# Limit number of questions if max_questions is set
if max_questions > 0:
questions = questions[:max_questions]
logger.info(f"Processing a maximum of {max_questions} questions for level {level}.")
else:
logger.info(f"Processing all {len(questions)} questions for level {level}.")
agent = BasicAgent(AGENT_WORKFLOW)
results = []
total_questions = len(questions)
for i, item in enumerate(progress.tqdm(questions, desc=f"Processing Level {level} Questions")):
result = await process_question(agent, item, base_fetch_file_url)
if result:
results.append(result)
# Optional: Add a small delay between questions if needed
# await asyncio.sleep(0.1)
# Submit answers
final_status, results_df = await submit_answers(submit_url, username, agent_code, results)
return final_status, results_df
# --- Gradio Interface ---
def create_gradio_interface():
"""Creates and returns the Gradio interface."""
logger.info("Creating Gradio interface...")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# GAIA Benchmark Agent Runner")
gr.Markdown("Run the initialized multi-agent system against the GAIA benchmark questions and submit the results.")
with gr.Row():
username = gr.Textbox(label="Username", placeholder="Enter your username (e.g., [email protected])")
agent_code = gr.Textbox(label="Agent Code", placeholder="Enter a short code for your agent (e.g., v1.0)")
with gr.Row():
level = gr.Dropdown(label="Benchmark Level", choices=[1, 2, 3], value=1)
max_questions = gr.Number(label="Max Questions (0 for all)", value=0, minimum=0, step=1)
api_url = gr.Textbox(label="GAIA API URL", value=DEFAULT_API_URL)
run_button = gr.Button("Run Benchmark and Submit", variant="primary")
with gr.Accordion("Results", open=False):
status_output = gr.Textbox(label="Submission Status", lines=5)
results_dataframe = gr.DataFrame(label="Detailed Results")
run_button.click(
fn=run_and_submit_all,
inputs=[username, agent_code, api_url, level, max_questions],
outputs=[status_output, results_dataframe]
)
logger.info("Gradio interface created.")
return demo
# --- Main Execution ---
if __name__ == "__main__":
if not AGENT_WORKFLOW:
print("ERROR: Agent Workflow failed to initialize. Cannot start Gradio app.")
print("Please check logs for initialization errors (e.g., missing API keys, import issues).")
else:
gradio_app = create_gradio_interface()
# Launch Gradio app
# Share=True creates a public link (use with caution)
# Set server_name="0.0.0.0" to allow access from network
gradio_app.launch(server_name="0.0.0.0", server_port=7860)