Spaces:
Running
Running
import os | |
import logging | |
import mimetypes | |
from dotenv import load_dotenv | |
from typing import Any, List | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from llama_index.core.agent.workflow import AgentWorkflow, ToolCallResult, ToolCall, AgentOutput | |
from llama_index.core.base.llms.types import ChatMessage, TextBlock, ImageBlock, AudioBlock | |
# Assuming agent initializers are in the same directory or a known path | |
# Adjust import paths if necessary based on deployment structure | |
try: | |
# Existing agents | |
from agents.image_analyzer_agent import initialize_image_analyzer_agent | |
from agents.reasoning_agent import initialize_reasoning_agent | |
from agents.text_analyzer_agent import initialize_text_analyzer_agent | |
from agents.code_agent import initialize_code_agent | |
from agents.math_agent import initialize_math_agent | |
from agents.planner_agent import initialize_planner_agent | |
from agents.research_agent import initialize_research_agent | |
from agents.role_agent import initialize_role_agent | |
from agents.verifier_agent import initialize_verifier_agent | |
# New agents | |
from agents.advanced_validation_agent import initialize_advanced_validation_agent | |
from agents.figure_interpretation_agent import initialize_figure_interpretation_agent | |
from agents.long_context_management_agent import initialize_long_context_management_agent | |
AGENT_IMPORT_PATH = "local" | |
except ImportError as e: | |
# Fallback for potential different structures (e.g., nested folder) | |
try: | |
from final_project.image_analyzer_agent import initialize_image_analyzer_agent | |
from final_project.reasoning_agent import initialize_reasoning_agent | |
from final_project.text_analyzer_agent import initialize_text_analyzer_agent | |
from final_project.code_agent import initialize_code_agent | |
from final_project.math_agent import initialize_math_agent | |
from final_project.planner_agent import initialize_planner_agent | |
from final_project.research_agent import initialize_research_agent | |
from final_project.role_agent import initialize_role_agent | |
from final_project.verifier_agent import initialize_verifier_agent | |
from final_project.advanced_validation_agent import initialize_advanced_validation_agent | |
from final_project.figure_interpretation_agent import initialize_figure_interpretation_agent | |
from final_project.long_context_management_agent import initialize_long_context_management_agent | |
AGENT_IMPORT_PATH = "final_project" | |
except ImportError as e2: | |
print(f"Import Error: Could not find agent modules. Tried local and final_project paths. Error: {e2}") | |
# Set initializers to None or raise error to prevent app start | |
initialize_image_analyzer_agent = None | |
# ... set all others to None ... | |
raise RuntimeError(f"Failed to import agent modules: {e2}") | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
load_dotenv() # Load environment variables from .env file | |
# Setup logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# --- Constants --- | |
DEFAULT_API_URL = os.getenv("GAIA_API_URL", "https://agents-course-unit4-scoring.hf.space") | |
# --- Agent Initialization (Singleton Pattern) --- | |
# Initialize the agent workflow once | |
AGENT_WORKFLOW = None | |
try: | |
logger.info(f"Initializing GAIA Multi-Agent Workflow (import path: {AGENT_IMPORT_PATH})...") | |
# Existing agents | |
role_agent = initialize_role_agent() | |
code_agent = initialize_code_agent() | |
math_agent = initialize_math_agent() | |
planner_agent = initialize_planner_agent() | |
research_agent = initialize_research_agent() | |
text_analyzer_agent = initialize_text_analyzer_agent() | |
verifier_agent = initialize_verifier_agent() | |
image_analyzer_agent = initialize_image_analyzer_agent() | |
reasoning_agent = initialize_reasoning_agent() | |
# New agents | |
advanced_validation_agent = initialize_advanced_validation_agent() | |
figure_interpretation_agent = initialize_figure_interpretation_agent() | |
long_context_management_agent = initialize_long_context_management_agent() | |
# Check if all agents initialized successfully | |
all_agents = [ | |
code_agent, role_agent, math_agent, planner_agent, research_agent, | |
text_analyzer_agent, image_analyzer_agent, verifier_agent, reasoning_agent, | |
advanced_validation_agent, figure_interpretation_agent, long_context_management_agent | |
] | |
if not all(all_agents): | |
raise RuntimeError("One or more agents failed to initialize.") | |
AGENT_WORKFLOW = AgentWorkflow( | |
agents=all_agents, | |
root_agent="planner_agent" # Keep planner as root as per plan | |
) | |
logger.info("GAIA Multi-Agent Workflow initialized successfully.") | |
except Exception as e: | |
logger.error(f"FATAL: Error initializing agent workflow: {e}", exc_info=True) | |
# AGENT_WORKFLOW remains None, BasicAgent init will fail | |
# --- Basic Agent Definition (Wrapper for Workflow) --- | |
class BasicAgent: | |
def __init__(self, workflow: AgentWorkflow): | |
if workflow is None: | |
logger.error("AgentWorkflow is None, initialization likely failed.") | |
raise RuntimeError("AgentWorkflow failed to initialize. Check logs for details.") | |
self.agent_workflow = workflow | |
logger.info("BasicAgent wrapper initialized.") | |
async def __call__(self, question: str | ChatMessage) -> Any: | |
if isinstance(question, ChatMessage): | |
log_question = str(question.blocks[0].text)[:100] if question.blocks and hasattr(question.blocks[0], "text") else str(question)[:100] | |
logger.info(f"Agent received question (first 100 chars): {log_question}...") | |
else: | |
logger.info(f"Agent received question (first 100 chars): {question[:100]}...") | |
handler = self.agent_workflow.run(user_msg=question) | |
current_agent = None | |
async for event in handler.stream_events(): | |
if ( | |
hasattr(event, "current_agent_name") | |
and event.current_agent_name != current_agent | |
): | |
current_agent = event.current_agent_name | |
logger.info(f"{'=' * 50}\n") | |
logger.info(f"{'=' * 50}\n") | |
# Optional detailed logging (uncomment if needed) | |
# from llama_index.core.agent.runner.base import AgentStream, AgentInput | |
# if isinstance(event, AgentStream): | |
# if event.delta: | |
# logger.debug(f"STREAM: {event.delta}") # Use debug level | |
# elif isinstance(event, AgentInput): | |
# logger.debug(f"📥 Input: {event.input}") # Use debug level | |
elif isinstance(event, AgentOutput): | |
if event.response and hasattr(event.response, 'content') and event.response.content: | |
logger.info(f"📤 Output: {event.response.content}") | |
if event.tool_calls: | |
logger.info( | |
f"🛠️ Planning to use tools: {[call.tool_name for call in event.tool_calls]}" | |
) | |
elif isinstance(event, ToolCallResult): | |
logger.info(f"🔧 Tool Result ({event.tool_name}):") | |
logger.info(f" Arguments: {event.tool_kwargs}") | |
# Limit output logging length if potentially very long | |
output_str = str(event.tool_output) | |
logger.info(f" Output: {output_str[:500]}{'...' if len(output_str) > 500 else ''}") | |
elif isinstance(event, ToolCall): | |
logger.info(f"🔨 Calling Tool: {event.tool_name}") | |
logger.info(f" With arguments: {event.tool_kwargs}") | |
answer = await handler | |
final_content = answer.response.content if hasattr(answer, 'response') and hasattr(answer.response, 'content') else str(answer) | |
logger.info(f"Agent returning final answer: {final_content[:500]}{'...' if len(final_content) > 500 else ''}") | |
return answer.response # Return the actual response object expected by Gradio | |
# --- Helper Functions for run_and_submit_all --- | |
async def fetch_questions(questions_url: str) -> List[dict] | None: | |
"""Fetches questions from the GAIA benchmark API.""" | |
logger.info(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=30) # Increased timeout | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
logger.warning("Fetched questions list is empty.") | |
return None | |
logger.info(f"Fetched {len(questions_data)} questions.") | |
return questions_data | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Error fetching questions: {e}", exc_info=True) | |
return None | |
except requests.exceptions.JSONDecodeError as e: | |
logger.error(f"Error decoding JSON response from questions endpoint: {e}", exc_info=True) | |
logger.error(f"Response text: {response.text[:500]}") | |
return None | |
except Exception as e: | |
logger.error(f"An unexpected error occurred fetching questions: {e}", exc_info=True) | |
return None | |
async def process_question(agent: BasicAgent, item: dict, base_fetch_file_url: str) -> dict | None: | |
"""Processes a single question item using the agent.""" | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
file_name = item.get("file_name") | |
if not task_id or question_text is None: | |
logger.warning(f"Skipping item with missing task_id or question: {item}") | |
return None | |
message: ChatMessage | |
if file_name: | |
fetch_file_url = f"{base_fetch_file_url}/{task_id}" | |
logger.info(f"Fetching file '{file_name}' for task {task_id} from {fetch_file_url}") | |
try: | |
response = requests.get(fetch_file_url, timeout=60) # Increased timeout for files | |
response.raise_for_status() | |
mime_type, _ = mimetypes.guess_type(file_name) | |
logger.info(f"File '{file_name}' MIME type guessed as: {mime_type}") | |
file_block: TextBlock | ImageBlock | AudioBlock | None = None | |
if mime_type: | |
# Prioritize specific extensions for text-like content | |
text_extensions = ( | |
".txt", ".csv", ".json", ".xml", ".yaml", ".yml", ".ini", ".cfg", ".toml", ".log", ".properties", | |
".html", ".htm", ".xhtml", ".css", ".scss", ".sass", ".less", ".svg", ".md", ".rst", | |
".py", ".js", ".java", ".c", ".cpp", ".h", ".hpp", ".cs", ".go", ".php", ".rb", ".swift", ".kt", | |
".sh", ".bat", ".ipynb", ".Rmd", ".tex" # Added more code/markup types | |
) | |
if mime_type.startswith('text/') or file_name.lower().endswith(text_extensions): | |
try: | |
file_content = response.content.decode('utf-8') # Try UTF-8 first | |
except UnicodeDecodeError: | |
try: | |
file_content = response.content.decode('latin-1') # Fallback | |
logger.warning(f"Decoded file {file_name} using latin-1 fallback.") | |
except Exception as decode_err: | |
logger.error(f"Could not decode file {file_name}: {decode_err}") | |
file_content = f"[Error: Could not decode file content for {file_name}]" | |
file_block = TextBlock(block_type="text", text=file_content) | |
elif mime_type.startswith('image/'): | |
# Pass image content directly for multi-modal models | |
file_block = ImageBlock(url=fetch_file_url, image=response.content) | |
elif mime_type.startswith('audio/'): | |
# Pass audio content directly | |
file_block = AudioBlock(url=fetch_file_url, audio=response.content) | |
elif mime_type == 'application/pdf': | |
# PDF: Pass a text block indicating the URL for agents to handle | |
logger.info(f"PDF file detected: {file_name}. Passing reference URL.") | |
file_block = TextBlock(text=f"[Reference PDF file available at: {fetch_file_url}]") | |
# Add handling for other types like video if needed | |
# elif mime_type.startswith('video/'): | |
# logger.info(f"Video file detected: {file_name}. Passing reference URL.") | |
# file_block = TextBlock(text=f"[Reference Video file available at: {fetch_file_url}]") | |
if file_block: | |
blocks = [TextBlock(text=question_text), file_block] | |
message = ChatMessage(role="user", blocks=blocks) | |
else: | |
logger.warning(f"File type for '{file_name}' (MIME: {mime_type}) not directly supported for block creation or no block created (e.g., unsupported). Passing text question only.") | |
message = ChatMessage(role="user", blocks=[TextBlock(text=question_text)]) | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Error fetching file for task {task_id}: {e}", exc_info=True) | |
return {"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: Failed to fetch file {file_name} - {e}"} | |
except Exception as e: | |
logger.error(f"Error processing file for task {task_id}: {e}", exc_info=True) | |
return {"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: Failed to process file {file_name} - {e}"} | |
else: | |
# No file associated with the question | |
message = ChatMessage(role="user", blocks=[TextBlock(text=question_text)]) | |
# Run the agent on the prepared message | |
try: | |
logger.info(f"Running agent on task {task_id}...") | |
submitted_answer_response = await agent(message) | |
# Extract content safely | |
submitted_answer = submitted_answer_response.content if hasattr(submitted_answer_response, 'content') else str(submitted_answer_response) | |
logger.info(f"👍 Agent submitted answer for task {task_id}: {submitted_answer[:200]}{'...' if len(submitted_answer) > 200 else ''}") | |
return {"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer} | |
except Exception as e: | |
logger.error(f"Error running agent on task {task_id}: {e}", exc_info=True) | |
return {"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"} | |
async def submit_answers(submit_url: str, username: str, agent_code: str, results: List[dict]) -> tuple[str, pd.DataFrame]: | |
"""Submits the collected answers to the GAIA benchmark API.""" | |
answers_payload = [ | |
{"task_id": r["Task ID"], "submitted_answer": r["Submitted Answer"]} | |
for r in results if "Submitted Answer" in r and not str(r["Submitted Answer"]).startswith("AGENT ERROR:") | |
] | |
if not answers_payload: | |
logger.warning("Agent did not produce any valid answers to submit.") | |
results_df = pd.DataFrame(results) | |
return "Agent did not produce any valid answers to submit.", results_df | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
logger.info(status_update) | |
logger.info(f"Submitting to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=120) # Increased timeout | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
logger.info("Submission successful.") | |
results_df = pd.DataFrame(results) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
logger.error(status_message) | |
results_df = pd.DataFrame(results) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
logger.error(status_message) | |
results_df = pd.DataFrame(results) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
logger.error(status_message) | |
results_df = pd.DataFrame(results) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"Submission Failed: An unexpected error occurred during submission - {e}" | |
logger.error(status_message, exc_info=True) | |
results_df = pd.DataFrame(results) | |
return status_message, results_df | |
# --- Main Function for Batch Processing --- | |
async def run_and_submit_all( | |
username: str, | |
agent_code: str, | |
api_url: str = DEFAULT_API_URL, | |
level: int = 1, | |
max_questions: int = 0, # 0 means all questions for the level | |
progress=gr.Progress(track_tqdm=True) | |
) -> tuple[str, pd.DataFrame]: | |
"""Fetches all questions for a level, runs the agent, and submits answers.""" | |
if not AGENT_WORKFLOW: | |
error_msg = "Agent Workflow is not initialized. Cannot run benchmark." | |
logger.error(error_msg) | |
return error_msg, pd.DataFrame() | |
if not username or not username.strip(): | |
error_msg = "Username cannot be empty." | |
logger.error(error_msg) | |
return error_msg, pd.DataFrame() | |
questions_url = f"{api_url}/questions?level={level}" | |
submit_url = f"{api_url}/submit" | |
base_fetch_file_url = f"{api_url}/get_file" | |
questions = await fetch_questions(questions_url) | |
if questions is None: | |
error_msg = f"Failed to fetch questions for level {level}. Check logs." | |
return error_msg, pd.DataFrame() | |
# Limit number of questions if max_questions is set | |
if max_questions > 0: | |
questions = questions[:max_questions] | |
logger.info(f"Processing a maximum of {max_questions} questions for level {level}.") | |
else: | |
logger.info(f"Processing all {len(questions)} questions for level {level}.") | |
agent = BasicAgent(AGENT_WORKFLOW) | |
results = [] | |
total_questions = len(questions) | |
for i, item in enumerate(progress.tqdm(questions, desc=f"Processing Level {level} Questions")): | |
result = await process_question(agent, item, base_fetch_file_url) | |
if result: | |
results.append(result) | |
# Optional: Add a small delay between questions if needed | |
# await asyncio.sleep(0.1) | |
# Submit answers | |
final_status, results_df = await submit_answers(submit_url, username, agent_code, results) | |
return final_status, results_df | |
# --- Gradio Interface --- | |
def create_gradio_interface(): | |
"""Creates and returns the Gradio interface.""" | |
logger.info("Creating Gradio interface...") | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# GAIA Benchmark Agent Runner") | |
gr.Markdown("Run the initialized multi-agent system against the GAIA benchmark questions and submit the results.") | |
with gr.Row(): | |
username = gr.Textbox(label="Username", placeholder="Enter your username (e.g., [email protected])") | |
agent_code = gr.Textbox(label="Agent Code", placeholder="Enter a short code for your agent (e.g., v1.0)") | |
with gr.Row(): | |
level = gr.Dropdown(label="Benchmark Level", choices=[1, 2, 3], value=1) | |
max_questions = gr.Number(label="Max Questions (0 for all)", value=0, minimum=0, step=1) | |
api_url = gr.Textbox(label="GAIA API URL", value=DEFAULT_API_URL) | |
run_button = gr.Button("Run Benchmark and Submit", variant="primary") | |
with gr.Accordion("Results", open=False): | |
status_output = gr.Textbox(label="Submission Status", lines=5) | |
results_dataframe = gr.DataFrame(label="Detailed Results") | |
run_button.click( | |
fn=run_and_submit_all, | |
inputs=[username, agent_code, api_url, level, max_questions], | |
outputs=[status_output, results_dataframe] | |
) | |
logger.info("Gradio interface created.") | |
return demo | |
# --- Main Execution --- | |
if __name__ == "__main__": | |
if not AGENT_WORKFLOW: | |
print("ERROR: Agent Workflow failed to initialize. Cannot start Gradio app.") | |
print("Please check logs for initialization errors (e.g., missing API keys, import issues).") | |
else: | |
gradio_app = create_gradio_interface() | |
# Launch Gradio app | |
# Share=True creates a public link (use with caution) | |
# Set server_name="0.0.0.0" to allow access from network | |
gradio_app.launch(server_name="0.0.0.0", server_port=7860) | |