Aekanun's picture
fixed app.py
531f528
raw
history blame
4.62 kB
import os
import warnings
import torch
import gc
from transformers import AutoModelForVision2Seq, AutoProcessor
from peft import PeftModel
from PIL import Image
import gradio as gr
from huggingface_hub import login
# Basic settings
warnings.filterwarnings('ignore')
os.environ["CUDA_VISIBLE_DEVICES"] = "" # ปิดการใช้ CUDA
# Global variables
model = None
processor = None
# Login to Hugging Face Hub
if 'HUGGING_FACE_HUB_TOKEN' in os.environ:
print("กำลังเข้าสู่ระบบ Hugging Face Hub...")
login(token=os.environ['HUGGING_FACE_HUB_TOKEN'])
else:
print("คำเตือน: ไม่พบ HUGGING_FACE_HUB_TOKEN")
def load_model_and_processor():
"""โหลดโมเดลและ processor"""
global model, processor
print("กำลังโหลดโมเดลและ processor...")
try:
# Model paths
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
adapter_path = "Aekanun/thai-handwriting-llm"
# Load processor from base model
print("กำลังโหลด processor...")
processor = AutoProcessor.from_pretrained(base_model_path, use_auth_token=True)
# Load base model
print("กำลังโหลด base model...")
base_model = AutoModelForVision2Seq.from_pretrained(
base_model_path,
device_map={"": "cpu"}, # ใช้ CPU
torch_dtype=torch.float32, # ใช้ float32 แทน bfloat16
trust_remote_code=True,
use_auth_token=True
)
# Load adapter
print("กำลังโหลด adapter...")
model = PeftModel.from_pretrained(
base_model,
adapter_path,
torch_dtype=torch.float32, # ใช้ float32
device_map={"": "cpu"}, # ใช้ CPU
use_auth_token=True
)
print("โหลดโมเดลสำเร็จ!")
return True
except Exception as e:
print(f"เกิดข้อผิดพลาดในการโหลดโมเดล: {str(e)}")
return False
def process_handwriting(image):
"""ฟังก์ชันสำหรับ Gradio interface"""
global model, processor
if image is None:
return "กรุณาอัพโหลดรูปภาพ"
try:
# Ensure image is in PIL format
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Create prompt
prompt = """Transcribe the Thai handwritten text from the provided image.
Only return the transcription in Thai language."""
# Create model inputs
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "image": image}
],
}
]
# Process with model
text = processor.apply_chat_template(messages, tokenize=False)
inputs = processor(text=text, images=image, return_tensors="pt")
# Move inputs to CPU
inputs = {k: v.to('cpu') for k, v in inputs.items()}
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=256,
do_sample=False,
pad_token_id=processor.tokenizer.pad_token_id
)
# Decode output
transcription = processor.decode(outputs[0], skip_special_tokens=True)
return transcription.strip()
except Exception as e:
return f"เกิดข้อผิดพลาด: {str(e)}"
# Initialize application
print("กำลังเริ่มต้นแอปพลิเคชัน...")
if load_model_and_processor():
# Create Gradio interface
demo = gr.Interface(
fn=process_handwriting,
inputs=gr.Image(type="pil", label="อัพโหลดรูปลายมือเขียนภาษาไทย"),
outputs=gr.Textbox(label="ข้อความที่แปลงได้"),
title="Thai Handwriting Recognition",
description="อัพโหลดรูปภาพลายมือเขียนภาษาไทยเพื่อแปลงเป็นข้อความ",
examples=[["example1.jpg"], ["example2.jpg"]]
)
if __name__ == "__main__":
demo.launch()
else:
print("ไม่สามารถเริ่มต้นแอปพลิเคชันได้")