DataForge / graph.py
ai-puppy
Revert "update better model"
b7e87c1
import asyncio
import ast
import os
import re
from typing import Annotated, Dict, List, Optional
from typing_extensions import TypedDict
from dotenv import find_dotenv, load_dotenv
from langchain.chat_models import init_chat_model
from langgraph.graph import END, START, StateGraph
from pydantic import BaseModel, Field
# Import your existing agent functionality
from agent import create_analysis_agent, FileInjectedPyodideSandbox, create_pyodide_eval_fn
load_dotenv(find_dotenv())
# Initialize the language model
model = init_chat_model(
model="gpt-4.1-2025-04-14",
api_key=os.getenv("OPENAI_API_KEY"),
)
class FileExamination(BaseModel):
"""File examination results"""
file_type: str = Field(description="Type of file detected (log, csv, json, etc.)")
structure_pattern: str = Field(description="Detected structure pattern of the file")
sample_lines: List[str] = Field(description="First few lines of the file")
key_patterns: List[str] = Field(description="Important patterns found in sample")
data_format: str = Field(description="Format of data (structured, unstructured, mixed)")
complexity_level: str = Field(description="Simple, Medium, or Complex")
class CodeGuidance(BaseModel):
"""Code generation guidance"""
analysis_approach: str = Field(description="Recommended analysis approach")
required_imports: List[str] = Field(description="Python imports needed")
code_structure: str = Field(description="Step-by-step code structure")
specific_patterns: List[str] = Field(description="Specific regex patterns to use")
expected_outputs: List[str] = Field(description="What outputs to generate")
error_handling: str = Field(description="Error handling recommendations")
class CodeAnalysisState(TypedDict):
"""State for the code analysis workflow"""
file_path: str # Input file path
analysis_query: Optional[str] # Optional custom analysis query
# File examination results
file_examination: Optional[FileExamination]
# Generated guidance
code_guidance: Optional[CodeGuidance]
# Final results
generated_code: Optional[str]
execution_result: Optional[str]
final_analysis: Optional[str]
def validate_python_code(code: str) -> tuple[bool, str]:
"""
Validate Python code for syntax errors and potential issues.
Returns (is_valid, error_message)
"""
try:
# Try to parse the code as AST
ast.parse(code)
# Check for common problematic patterns
lines = code.split('\n')
for i, line in enumerate(lines, 1):
line_stripped = line.strip()
# Check for unterminated strings
if line_stripped.startswith('print(') and not line_stripped.endswith(')'):
if line_stripped.count('"') % 2 != 0 or line_stripped.count("'") % 2 != 0:
return False, f"Line {i}: Potentially unterminated string in print statement"
# Check for very long lines that might get truncated
if len(line) > 100:
return False, f"Line {i}: Line too long ({len(line)} chars) - may cause truncation"
return True, "Code validation passed"
except SyntaxError as e:
return False, f"Syntax error: {e.msg} at line {e.lineno}"
except Exception as e:
return False, f"Validation error: {str(e)}"
def examine_file_structure(state: CodeAnalysisState) -> CodeAnalysisState:
"""
Node 1: Examine the file structure by reading the first several lines
and understanding the file format and patterns.
"""
file_path = state["file_path"]
if not os.path.exists(file_path):
return {
"file_examination": FileExamination(
file_type="error",
structure_pattern="File not found",
sample_lines=[],
key_patterns=[],
data_format="unknown",
complexity_level="Simple"
)
}
try:
# Read first 20 lines for examination
with open(file_path, 'r', encoding='utf-8') as f:
sample_lines = []
for i, line in enumerate(f):
if i >= 20: # Read first 20 lines
break
sample_lines.append(line.rstrip('\n\r'))
if not sample_lines:
sample_lines = ["<empty file>"]
# Create examination prompt
examination_model = model.with_structured_output(FileExamination)
sample_text = '\n'.join(sample_lines[:10]) # Show first 10 lines in prompt
message = {
"role": "user",
"content": f"""
Examine this file sample and determine its structure and characteristics:
FILE PATH: {file_path}
FILE EXTENSION: {os.path.splitext(file_path)[1]}
FIRST 10 LINES:
```
{sample_text}
```
TOTAL SAMPLE LINES AVAILABLE: {len(sample_lines)}
Analyze and determine:
1. What type of file this is (log file, CSV, JSON, text, etc.)
2. The structure pattern (each line format/pattern)
3. Key patterns that would be important for analysis (timestamps, IPs, error codes, etc.)
4. Data format classification (structured/unstructured/mixed)
5. Complexity level for analysis (Simple/Medium/Complex)
Be specific about patterns you detect - these will guide code generation.
"""
}
examination_result = examination_model.invoke([message])
examination_result.sample_lines = sample_lines # Keep full sample
print(f"πŸ“‹ File Examination Complete:")
print(f" Type: {examination_result.file_type}")
print(f" Structure: {examination_result.structure_pattern}")
print(f" Complexity: {examination_result.complexity_level}")
print(f" Key Patterns: {examination_result.key_patterns}")
return {"file_examination": examination_result}
except Exception as e:
print(f"❌ Error examining file: {e}")
return {
"file_examination": FileExamination(
file_type="error",
structure_pattern=f"Error reading file: {str(e)}",
sample_lines=[],
key_patterns=[],
data_format="unknown",
complexity_level="Simple"
)
}
def generate_code_guidance(state: CodeAnalysisState) -> CodeAnalysisState:
"""
Node 2: Generate specific code guidance based on both the file examination and user question.
This creates a targeted prompt for the code generation that addresses the user's specific needs.
"""
file_examination = state["file_examination"]
analysis_query = state.get("analysis_query", "")
if not file_examination or file_examination.file_type == "error":
return {
"code_guidance": CodeGuidance(
analysis_approach="Basic file analysis with error handling",
required_imports=["re", "os"],
code_structure="1. Check file exists\n2. Basic error handling\n3. Simple output",
specific_patterns=[],
expected_outputs=["Error message"],
error_handling="Try-catch with informative errors"
)
}
try:
guidance_model = model.with_structured_output(CodeGuidance)
sample_preview = '\n'.join(file_examination.sample_lines[:5])
# Analyze the user's question to understand intent
question_analysis = analyze_user_question(analysis_query or "General comprehensive analysis")
message = {
"role": "user",
"content": f"""
Generate QUESTION-SPECIFIC Python code guidance for analyzing this file:
FILE ANALYSIS RESULTS:
- File Type: {file_examination.file_type}
- Structure Pattern: {file_examination.structure_pattern}
- Data Format: {file_examination.data_format}
- Complexity: {file_examination.complexity_level}
- Key Patterns Found: {file_examination.key_patterns}
SAMPLE LINES:
```
{sample_preview}
```
USER'S SPECIFIC QUESTION: "{analysis_query or "General comprehensive analysis"}"
QUESTION ANALYSIS:
- Intent: {question_analysis['intent']}
- Focus Areas: {question_analysis['focus_areas']}
- Expected Analysis Type: {question_analysis['analysis_type']}
- Key Terms: {question_analysis['key_terms']}
Based on BOTH the file structure AND the user's specific question, provide targeted guidance:
1. **Analysis Approach**: What specific method addresses the user's question for this file type
2. **Required Imports**: Exact Python imports needed for this specific analysis
3. **Code Structure**: Step-by-step structure that answers the user's question
4. **Specific Patterns**: Exact regex patterns or operations needed for the user's query
5. **Expected Outputs**: What specific outputs will answer the user's question
6. **Error Handling**: How to handle issues specific to this analysis type
IMPORTANT - Make guidance QUESTION-SPECIFIC:
- If user asks about "security", focus on authentication, IPs, failed logins, errors
- If user asks about "performance", focus on response times, slow operations, bottlenecks
- If user asks about "patterns", focus on frequency analysis, trends, anomalies
- If user asks about "errors", focus on error extraction, categorization, root causes
- If user asks about "statistics", focus on counts, averages, distributions
- If user asks about "time trends", focus on temporal analysis, time-based patterns
Generate code guidance that directly answers their question using the detected file structure.
"""
}
guidance_result = guidance_model.invoke([message])
print(f"🎯 Code Guidance Generated:")
print(f" Approach: {guidance_result.analysis_approach}")
print(f" Imports: {guidance_result.required_imports}")
print(f" Patterns: {len(guidance_result.specific_patterns)} specific patterns")
return {"code_guidance": guidance_result}
except Exception as e:
print(f"❌ Error generating guidance: {e}")
return {
"code_guidance": CodeGuidance(
analysis_approach="Basic analysis with error recovery",
required_imports=["re", "os"],
code_structure="Simple analysis with error handling",
specific_patterns=[],
expected_outputs=["Basic file information"],
error_handling="Comprehensive try-catch blocks"
)
}
def execute_guided_analysis(state: CodeAnalysisState) -> CodeAnalysisState:
"""
Node 3: Execute the file analysis using the generated guidance with code quality validation.
"""
file_path = state["file_path"]
file_examination = state["file_examination"]
code_guidance = state["code_guidance"]
analysis_query = state.get("analysis_query", "")
if not file_examination or not code_guidance:
return {
"execution_result": "❌ Missing examination or guidance data",
"final_analysis": "Analysis failed due to missing preliminary data"
}
try:
# Create the guided analysis query with strict code quality requirements
guided_query = f"""Based on the file examination and guidance, analyze this file with the following SPECIFIC instructions:
FILE CONTEXT:
- File Type: {file_examination.file_type}
- Structure: {file_examination.structure_pattern}
- Data Format: {file_examination.data_format}
- Complexity: {file_examination.complexity_level}
CODING GUIDANCE TO FOLLOW:
- Analysis Approach: {code_guidance.analysis_approach}
- Required Imports: {', '.join(code_guidance.required_imports)}
- Code Structure: {code_guidance.code_structure}
- Specific Patterns: {code_guidance.specific_patterns}
- Expected Outputs: {', '.join(code_guidance.expected_outputs)}
- Error Handling: {code_guidance.error_handling}
SAMPLE FILE STRUCTURE (first few lines):
```
{chr(10).join(file_examination.sample_lines[:5])}
```
USER REQUEST: {analysis_query or "Comprehensive analysis following the guidance above"}
CRITICAL CODE QUALITY REQUIREMENTS:
1. ALL print statements MUST be on single lines with properly closed quotes
2. NO multi-line strings or f-strings that span multiple lines
3. NO print statements longer than 80 characters - break into multiple prints instead
4. ALL strings must be properly terminated with matching quotes
5. Use short variable names and concise output formatting
6. If you need to print long text, use multiple short print() calls
7. Always close parentheses, brackets, and quotes on the same line they open
8. Use simple string concatenation instead of complex f-strings for long output
9. NEVER use triple quotes for multi-line strings in limited execution environments
10. Test each print statement individually to ensure it executes without truncation
EXAMPLE OF SAFE CODING PRACTICES:
```python
# GOOD - Short, single-line prints
print("=== Results ===")
print(f"Count: {{count}}")
print(f"User: {{user}}")
# BAD - Long print that could be truncated
print(f"This is a very long print statement that could get truncated...")
# GOOD - Break long output into multiple prints
print("Analysis complete:")
print(f"Found {{count}} items")
print(f"Top user: {{user}}")
```
MANDATORY CODE GENERATION PROCESS:
1. Generate your analysis code following the above requirements
2. Before presenting the code, internally validate each line for potential issues
3. Ensure ALL print statements are under 80 characters
4. Verify all quotes and parentheses are properly closed
5. If any line might cause issues, rewrite it using multiple shorter statements
INSTRUCTIONS:
1. Follow the specified analysis approach exactly
2. Import only the recommended libraries: {', '.join(code_guidance.required_imports)}
3. Use the specific patterns provided: {code_guidance.specific_patterns}
4. Structure your code following: {code_guidance.code_structure}
5. Generate the expected outputs: {', '.join(code_guidance.expected_outputs)}
6. Implement proper error handling: {code_guidance.error_handling}
7. ENSURE ALL CODE FOLLOWS THE QUALITY REQUIREMENTS ABOVE
Since you have detailed guidance about this specific file structure, your code should be highly accurate and efficient.
The file examination shows this is a {file_examination.file_type} with {file_examination.data_format} data format.
Write Python code that leverages this specific knowledge for optimal analysis and follows strict code quality standards.
"""
print(f"πŸš€ Executing guided analysis...")
print(f" Using {len(code_guidance.required_imports)} specific imports")
print(f" Following {file_examination.complexity_level} complexity approach")
# Use the existing agent with the guided query
agent = create_analysis_agent(file_path, model)
async def run_guided_analysis():
result_parts = []
async for typ, chunk in agent.astream(
{"messages": guided_query},
stream_mode=["values", "messages"],
):
if typ == "messages":
if hasattr(chunk[0], 'content') and chunk[0].content:
result_parts.append(chunk[0].content)
elif typ == "values":
if chunk and "messages" in chunk:
final_message = chunk["messages"][-1]
if hasattr(final_message, 'content') and final_message.content:
result_parts.append(f"\n\n=== FINAL ANALYSIS ===\n{final_message.content}")
return "\n".join(result_parts) if result_parts else "Analysis completed but no output generated."
# Run the analysis
execution_result = asyncio.run(run_guided_analysis())
# Create final analysis summary
final_analysis = f"""=== GUIDED FILE ANALYSIS RESULTS ===
File: {file_path}
Type: {file_examination.file_type} ({file_examination.data_format})
Approach: {code_guidance.analysis_approach}
{execution_result}
=== ANALYSIS METADATA ===
- Examination guided approach: βœ…
- Specific patterns used: {len(code_guidance.specific_patterns)} patterns
- Complexity level: {file_examination.complexity_level}
- Guided imports: {', '.join(code_guidance.required_imports)}
"""
print(f"βœ… Guided analysis completed successfully!")
return {
"execution_result": execution_result,
"final_analysis": final_analysis
}
except Exception as e:
error_msg = f"❌ Error in guided analysis execution: {str(e)}"
print(error_msg)
return {
"execution_result": error_msg,
"final_analysis": f"Analysis failed: {str(e)}"
}
def build_guided_analysis_graph():
"""
Build the guided file analysis workflow graph.
The workflow:
1. Examine file structure (first ~20 lines)
2. Generate specific code guidance based on structure
3. Execute analysis with improved guidance
"""
builder = StateGraph(CodeAnalysisState)
# Add nodes
builder.add_node("examine_file_structure", examine_file_structure)
builder.add_node("generate_code_guidance", generate_code_guidance)
builder.add_node("execute_guided_analysis", execute_guided_analysis)
# Add edges - linear workflow
builder.add_edge(START, "examine_file_structure")
builder.add_edge("examine_file_structure", "generate_code_guidance")
builder.add_edge("generate_code_guidance", "execute_guided_analysis")
builder.add_edge("execute_guided_analysis", END)
return builder.compile()
# Create the graph instance
guided_analysis_graph = build_guided_analysis_graph()
def analyze_user_question(question: str) -> dict:
"""
Analyze the user's question to understand their intent and focus areas.
This helps generate more targeted code guidance.
"""
question_lower = question.lower()
# Determine primary intent
intent = "general"
if any(word in question_lower for word in ["security", "threat", "attack", "login", "auth", "breach", "suspicious"]):
intent = "security"
elif any(word in question_lower for word in ["performance", "slow", "fast", "speed", "time", "latency", "bottleneck"]):
intent = "performance"
elif any(word in question_lower for word in ["error", "exception", "fail", "problem", "issue", "bug"]):
intent = "error_analysis"
elif any(word in question_lower for word in ["pattern", "trend", "frequent", "common", "anomal", "unusual"]):
intent = "pattern_analysis"
elif any(word in question_lower for word in ["statistic", "count", "average", "distribution", "summary", "metrics"]):
intent = "statistical"
elif any(word in question_lower for word in ["time", "temporal", "timeline", "chronological", "over time"]):
intent = "temporal"
# Identify focus areas
focus_areas = []
if "ip" in question_lower or "address" in question_lower:
focus_areas.append("ip_analysis")
if "user" in question_lower or "account" in question_lower:
focus_areas.append("user_analysis")
if "endpoint" in question_lower or "api" in question_lower or "url" in question_lower:
focus_areas.append("endpoint_analysis")
if "database" in question_lower or "query" in question_lower or "db" in question_lower:
focus_areas.append("database_analysis")
if "network" in question_lower or "connection" in question_lower:
focus_areas.append("network_analysis")
# Determine analysis type
analysis_type = "comprehensive"
if any(word in question_lower for word in ["find", "identify", "detect", "search"]):
analysis_type = "detection"
elif any(word in question_lower for word in ["show", "list", "display", "get"]):
analysis_type = "extraction"
elif any(word in question_lower for word in ["analyze", "examine", "investigate"]):
analysis_type = "deep_analysis"
elif any(word in question_lower for word in ["count", "how many", "frequency"]):
analysis_type = "quantitative"
elif any(word in question_lower for word in ["compare", "correlation", "relationship"]):
analysis_type = "comparative"
# Extract key terms
key_terms = []
import re
# Extract quoted terms
quoted_terms = re.findall(r'"([^"]*)"', question)
key_terms.extend(quoted_terms)
# Extract technical terms
tech_terms = re.findall(r'\b(?:login|logout|auth|api|endpoint|database|query|ip|user|error|exception|timeout|response|request|status|code)\b', question_lower)
key_terms.extend(tech_terms)
return {
"intent": intent,
"focus_areas": focus_areas if focus_areas else ["general"],
"analysis_type": analysis_type,
"key_terms": list(set(key_terms)) # Remove duplicates
}
async def analyze_file_with_guidance(file_path: str, analysis_query: str = None) -> str:
"""
Main function to analyze a file using the guided approach.
Args:
file_path: Path to the file to analyze
analysis_query: Optional specific analysis request
Returns:
Final analysis results
"""
print(f"πŸ” Starting guided analysis for: {file_path}")
# Initialize state
initial_state = {
"file_path": file_path,
"analysis_query": analysis_query
}
# Run the graph
try:
final_state = await guided_analysis_graph.ainvoke(initial_state)
return final_state.get("final_analysis", "Analysis completed but no results generated.")
except Exception as e:
return f"❌ Guided analysis failed: {str(e)}"
def analyze_file_with_guidance_sync(file_path: str, analysis_query: str = None) -> str:
"""
Synchronous wrapper for the guided analysis.
"""
return asyncio.run(analyze_file_with_guidance(file_path, analysis_query))
# Example usage and testing
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
test_file_path = sys.argv[1]
test_query = sys.argv[2] if len(sys.argv) > 2 else None
print(f"πŸ§ͺ Testing guided analysis with: {test_file_path}")
if test_query:
print(f"πŸ“ Custom query: {test_query}")
result = analyze_file_with_guidance_sync(test_file_path, test_query)
print("\n" + "="*80)
print("GUIDED ANALYSIS RESULT:")
print("="*80)
print(result)
else:
print("Usage: python graph.py <file_path> [analysis_query]")
print("\nThis will run the guided analysis workflow that:")
print("1. πŸ“‹ Examines file structure (first ~20 lines)")
print("2. 🎯 Generates specific code guidance")
print("3. πŸš€ Executes analysis with improved context")