Update app.py
Browse files
app.py
CHANGED
@@ -30,8 +30,600 @@ class HuggingFaceInfoServer:
|
|
30 |
})
|
31 |
self.cache = {}
|
32 |
self.cache_ttl = 3600 # 1 hour cache TTL
|
33 |
-
|
34 |
def _is_cache_valid(self, cache_key: str) -> bool:
|
35 |
if cache_key not in self.cache:
|
36 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
)
|
|
|
30 |
})
|
31 |
self.cache = {}
|
32 |
self.cache_ttl = 3600 # 1 hour cache TTL
|
33 |
+
|
34 |
def _is_cache_valid(self, cache_key: str) -> bool:
|
35 |
if cache_key not in self.cache:
|
36 |
return False
|
37 |
+
cache_time = self.cache[cache_key].get('timestamp', 0)
|
38 |
+
return time.time() - cache_time < self.cache_ttl
|
39 |
+
|
40 |
+
def _get_from_cache(self, cache_key: str) -> Optional[str]:
|
41 |
+
if self._is_cache_valid(cache_key):
|
42 |
+
return self.cache[cache_key]['content']
|
43 |
+
return None
|
44 |
+
|
45 |
+
def _store_in_cache(self, cache_key: str, content: str):
|
46 |
+
self.cache[cache_key] = {
|
47 |
+
'content': content,
|
48 |
+
'timestamp': time.time()
|
49 |
+
}
|
50 |
+
|
51 |
+
def _fetch_with_retry(self, url: str, max_retries: int = 3) -> Optional[str]:
|
52 |
+
cache_key = f"url_{hash(url)}"
|
53 |
+
cached_content = self._get_from_cache(cache_key)
|
54 |
+
if cached_content:
|
55 |
+
logger.info(f"Cache hit for {url}")
|
56 |
+
return cached_content
|
57 |
+
for attempt in range(max_retries):
|
58 |
+
try:
|
59 |
+
logger.info(f"Fetching {url} (attempt {attempt + 1})")
|
60 |
+
response = self.session.get(url, timeout=20)
|
61 |
+
response.raise_for_status()
|
62 |
+
content = response.text
|
63 |
+
self._store_in_cache(cache_key, content)
|
64 |
+
return content
|
65 |
+
except requests.exceptions.RequestException as e:
|
66 |
+
logger.warning(f"Attempt {attempt + 1} failed for {url}: {e}")
|
67 |
+
if attempt < max_retries - 1:
|
68 |
+
time.sleep(2 ** attempt)
|
69 |
+
else:
|
70 |
+
logger.error(f"All attempts failed for {url}")
|
71 |
+
return None
|
72 |
+
return None
|
73 |
+
|
74 |
+
def _extract_code_examples(self, soup: BeautifulSoup) -> List[Dict[str, str]]:
|
75 |
+
code_blocks = []
|
76 |
+
code_elements = soup.find_all(['code', 'pre'])
|
77 |
+
for code_elem in code_elements:
|
78 |
+
lang_class = code_elem.get('class', [])
|
79 |
+
language = 'python'
|
80 |
+
for cls in lang_class:
|
81 |
+
if 'language-' in str(cls):
|
82 |
+
language = str(cls).replace('language-', '')
|
83 |
+
break
|
84 |
+
elif any(lang in str(cls).lower() for lang in ['python', 'bash', 'javascript', 'json']):
|
85 |
+
language = str(cls).lower()
|
86 |
+
break
|
87 |
+
code_text = code_elem.get_text(strip=True)
|
88 |
+
if len(code_text) > 20 and any(keyword in code_text.lower() for keyword in ['import', 'from', 'def', 'class', 'pip install', 'transformers']):
|
89 |
+
code_blocks.append({'code': code_text, 'language': language, 'type': 'usage' if any(word in code_text.lower() for word in ['import', 'load', 'pipeline']) else 'example'})
|
90 |
+
highlight_blocks = soup.find_all('div', class_=re.compile(r'highlight|code-block|language'))
|
91 |
+
for block in highlight_blocks:
|
92 |
+
code_text = block.get_text(strip=True)
|
93 |
+
if len(code_text) > 20:
|
94 |
+
code_blocks.append({'code': code_text, 'language': 'python', 'type': 'example'})
|
95 |
+
seen = set()
|
96 |
+
unique_blocks = []
|
97 |
+
for block in code_blocks:
|
98 |
+
code_hash = hash(block['code'][:100])
|
99 |
+
if code_hash not in seen:
|
100 |
+
seen.add(code_hash)
|
101 |
+
unique_blocks.append(block)
|
102 |
+
if len(unique_blocks) >= 5:
|
103 |
+
break
|
104 |
+
return unique_blocks
|
105 |
+
|
106 |
+
def _extract_practical_content(self, soup: BeautifulSoup, topic: str) -> Dict[str, Any]:
|
107 |
+
content = {'overview': '', 'code_examples': [], 'usage_instructions': [], 'parameters': [], 'methods': [], 'installation': '', 'quickstart': ''}
|
108 |
+
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_=re.compile(r'content|docs|prose'))
|
109 |
+
if not main_content:
|
110 |
+
return content
|
111 |
+
overview_sections = main_content.find_all('p', limit=5)
|
112 |
+
overview_texts = []
|
113 |
+
for p in overview_sections:
|
114 |
+
text = p.get_text(strip=True)
|
115 |
+
if len(text) > 30 and not text.startswith('Table of contents'):
|
116 |
+
overview_texts.append(text)
|
117 |
+
if overview_texts:
|
118 |
+
overview = ' '.join(overview_texts)
|
119 |
+
content['overview'] = overview[:1000] + "..." if len(overview) > 1000 else overview
|
120 |
+
content['code_examples'] = self._extract_code_examples(main_content)
|
121 |
+
install_headings = main_content.find_all(['h1', 'h2', 'h3', 'h4'], string=re.compile(r'install|setup|getting started', re.IGNORECASE))
|
122 |
+
for heading in install_headings:
|
123 |
+
next_elem = heading.find_next_sibling()
|
124 |
+
install_text = []
|
125 |
+
while next_elem and next_elem.name not in ['h1', 'h2', 'h3', 'h4'] and len(install_text) < 3:
|
126 |
+
if next_elem.name in ['p', 'pre', 'code']:
|
127 |
+
text = next_elem.get_text(strip=True)
|
128 |
+
if text and len(text) > 10:
|
129 |
+
install_text.append(text)
|
130 |
+
next_elem = next_elem.find_next_sibling()
|
131 |
+
if install_text:
|
132 |
+
content['installation'] = ' '.join(install_text)
|
133 |
+
break
|
134 |
+
usage_headings = main_content.find_all(['h1', 'h2', 'h3', 'h4'])
|
135 |
+
for heading in usage_headings:
|
136 |
+
heading_text = heading.get_text(strip=True).lower()
|
137 |
+
if any(keyword in heading_text for keyword in ['usage', 'example', 'how to', 'quickstart', 'getting started']):
|
138 |
+
next_elem = heading.find_next_sibling()
|
139 |
+
instruction_parts = []
|
140 |
+
while next_elem and next_elem.name not in ['h1', 'h2', 'h3', 'h4']:
|
141 |
+
if next_elem.name in ['p', 'li', 'div', 'ol', 'ul']:
|
142 |
+
text = next_elem.get_text(strip=True)
|
143 |
+
if text and len(text) > 15:
|
144 |
+
instruction_parts.append(text)
|
145 |
+
next_elem = next_elem.find_next_sibling()
|
146 |
+
if len(instruction_parts) >= 5:
|
147 |
+
break
|
148 |
+
if instruction_parts:
|
149 |
+
content['usage_instructions'].extend(instruction_parts)
|
150 |
+
tables = main_content.find_all('table')
|
151 |
+
for table in tables:
|
152 |
+
headers = [th.get_text(strip=True).lower() for th in table.find_all('th')]
|
153 |
+
if any(keyword in ' '.join(headers) for keyword in ['parameter', 'argument', 'option', 'attribute', 'name', 'type']):
|
154 |
+
rows = table.find_all('tr')[1:]
|
155 |
+
for row in rows[:8]:
|
156 |
+
cells = [td.get_text(strip=True) for td in row.find_all('td')]
|
157 |
+
if len(cells) >= 2:
|
158 |
+
param_info = {'name': cells[0], 'description': cells[1] if len(cells) > 1 else '', 'type': cells[2] if len(cells) > 2 else '', 'default': cells[3] if len(cells) > 3 else ''}
|
159 |
+
content['parameters'].append(param_info)
|
160 |
+
return content
|
161 |
+
|
162 |
+
def search_documentation(self, query: str, max_results: int = 3) -> str:
|
163 |
+
"""
|
164 |
+
Searches the official Hugging Face documentation for a specific topic and returns a summary.
|
165 |
+
This tool is useful for finding how-to guides, explanations of concepts like 'pipeline' or 'tokenizer', and usage examples.
|
166 |
+
Args:
|
167 |
+
query (str): The topic or keyword to search for in the documentation (e.g., 'fine-tuning', 'peft', 'datasets').
|
168 |
+
max_results (int): The maximum number of documentation pages to retrieve and summarize. Defaults to 3.
|
169 |
+
"""
|
170 |
+
try:
|
171 |
+
max_results = int(max_results) if isinstance(max_results, str) else max_results
|
172 |
+
max_results = min(max_results, 5)
|
173 |
+
query_lower = query.lower().strip()
|
174 |
+
if not query_lower:
|
175 |
+
return "Please provide a search query."
|
176 |
+
doc_sections = {
|
177 |
+
'transformers': {'base_url': 'https://huggingface.co/docs/transformers', 'topics': {'pipeline': '/main_classes/pipelines', 'tokenizer': '/main_classes/tokenizer', 'trainer': '/main_classes/trainer', 'model': '/main_classes/model', 'quicktour': '/quicktour', 'installation': '/installation', 'fine-tuning': '/training', 'training': '/training', 'inference': '/main_classes/pipelines', 'preprocessing': '/preprocessing', 'tutorial': '/tutorials', 'configuration': '/main_classes/configuration', 'peft': '/peft', 'lora': '/peft', 'quantization': '/main_classes/quantization', 'generation': '/main_classes/text_generation', 'optimization': '/perf_train_gpu_one', 'deployment': '/deployment', 'custom': '/custom_models'}},
|
178 |
+
'datasets': {'base_url': 'https://huggingface.co/docs/datasets', 'topics': {'loading': '/load_hub', 'load': '/load_hub', 'processing': '/process', 'streaming': '/stream', 'audio': '/audio_process', 'image': '/image_process', 'text': '/nlp_process', 'arrow': '/about_arrow', 'cache': '/cache', 'upload': '/upload_dataset', 'custom': '/dataset_script'}},
|
179 |
+
'diffusers': {'base_url': 'https://huggingface.co/docs/diffusers', 'topics': {'pipeline': '/using-diffusers/loading', 'stable diffusion': '/using-diffusers/stable_diffusion', 'controlnet': '/using-diffusers/controlnet', 'inpainting': '/using-diffusers/inpaint', 'training': '/training/overview', 'optimization': '/optimization/fp16', 'schedulers': '/using-diffusers/schedulers'}},
|
180 |
+
'hub': {'base_url': 'https://huggingface.co/docs/hub', 'topics': {'repositories': '/repositories', 'git': '/repositories-getting-started', 'spaces': '/spaces', 'models': '/models', 'datasets': '/datasets'}}
|
181 |
+
}
|
182 |
+
relevant_urls = []
|
183 |
+
for section_name, section_data in doc_sections.items():
|
184 |
+
base_url = section_data['base_url']
|
185 |
+
topics = section_data['topics']
|
186 |
+
for topic, path in topics.items():
|
187 |
+
relevance = 0
|
188 |
+
if query_lower == topic.lower(): relevance = 1.0
|
189 |
+
elif query_lower in topic.lower(): relevance = 0.9
|
190 |
+
elif any(word in topic.lower() for word in query_lower.split()): relevance = 0.7
|
191 |
+
elif any(word in query_lower for word in topic.lower().split()): relevance = 0.6
|
192 |
+
if relevance > 0:
|
193 |
+
full_url = base_url + path
|
194 |
+
relevant_urls.append({'url': full_url, 'topic': topic, 'section': section_name, 'relevance': relevance})
|
195 |
+
relevant_urls.sort(key=lambda x: x['relevance'], reverse=True)
|
196 |
+
relevant_urls = relevant_urls[:max_results]
|
197 |
+
if not relevant_urls:
|
198 |
+
return f"β No documentation found for '{query}'. Try: pipeline, tokenizer, trainer, model, fine-tuning, datasets, diffusers, or peft."
|
199 |
+
result = f"# π Hugging Face Documentation: {query}\n\n"
|
200 |
+
for i, url_info in enumerate(relevant_urls, 1):
|
201 |
+
section_emoji = {'transformers': 'π€', 'datasets': 'π', 'diffusers': 'π¨', 'hub': 'π'}.get(url_info['section'], 'π')
|
202 |
+
result += f"## {i}. {section_emoji} {url_info['topic'].title()} ({url_info['section'].title()})\n\n"
|
203 |
+
content = self._fetch_with_retry(url_info['url'])
|
204 |
+
if content:
|
205 |
+
soup = BeautifulSoup(content, 'html.parser')
|
206 |
+
practical_content = self._extract_practical_content(soup, url_info['topic'])
|
207 |
+
if practical_content['overview']: result += f"**π Overview:**\n{practical_content['overview']}\n\n"
|
208 |
+
if practical_content['installation']: result += f"**βοΈ Installation:**\n{practical_content['installation']}\n\n"
|
209 |
+
if practical_content['code_examples']:
|
210 |
+
result += "**π» Code Examples:**\n\n"
|
211 |
+
for j, code_block in enumerate(practical_content['code_examples'][:3], 1):
|
212 |
+
lang = code_block.get('language', 'python')
|
213 |
+
code_type = code_block.get('type', 'example')
|
214 |
+
result += f"*{code_type.title()} {j}:*\n```{lang}\n{code_block['code']}\n```\n\n"
|
215 |
+
if practical_content['usage_instructions']:
|
216 |
+
result += "**π οΈ Usage Instructions:**\n"
|
217 |
+
for idx, instruction in enumerate(practical_content['usage_instructions'][:4], 1):
|
218 |
+
result += f"{idx}. {instruction}\n"
|
219 |
+
result += "\n"
|
220 |
+
if practical_content['parameters']:
|
221 |
+
result += "**βοΈ Parameters:**\n"
|
222 |
+
for param in practical_content['parameters'][:6]:
|
223 |
+
param_type = f" (`{param['type']}`)" if param.get('type') else ""
|
224 |
+
default_val = f" *Default: {param['default']}*" if param.get('default') else ""
|
225 |
+
result += f"β’ **{param['name']}**{param_type}: {param['description']}{default_val}\n"
|
226 |
+
result += "\n"
|
227 |
+
result += f"**π Full Documentation:** {url_info['url']}\n\n"
|
228 |
+
else:
|
229 |
+
result += f"β οΈ Could not fetch content. Visit directly: {url_info['url']}\n\n"
|
230 |
+
result += "---\n\n"
|
231 |
+
return result
|
232 |
+
except Exception as e:
|
233 |
+
logger.error(f"Error in search_documentation: {e}")
|
234 |
+
return f"β Error searching documentation: {str(e)}\n\nTry a simpler search term or check your internet connection."
|
235 |
+
|
236 |
+
def get_model_info(self, model_name: str) -> str:
|
237 |
+
"""
|
238 |
+
Fetches comprehensive information about a specific model from the Hugging Face Hub.
|
239 |
+
Provides statistics like downloads and likes, a description, usage examples, and a quick-start code snippet.
|
240 |
+
Args:
|
241 |
+
model_name (str): The full identifier of the model on the Hub, such as 'bert-base-uncased' or 'meta-llama/Llama-2-7b-hf'.
|
242 |
+
"""
|
243 |
+
try:
|
244 |
+
model_name = model_name.strip()
|
245 |
+
if not model_name: return "Please provide a model name."
|
246 |
+
api_url = f"{self.api_url}/models/{model_name}"
|
247 |
+
response = self.session.get(api_url, timeout=15)
|
248 |
+
if response.status_code == 404: return f"β Model '{model_name}' not found. Please check the model name."
|
249 |
+
elif response.status_code != 200: return f"β Error fetching model info (Status: {response.status_code})"
|
250 |
+
model_data = response.json()
|
251 |
+
result = f"# π€ Model: {model_name}\n\n"
|
252 |
+
downloads = model_data.get('downloads', 0)
|
253 |
+
likes = model_data.get('likes', 0)
|
254 |
+
task = model_data.get('pipeline_tag', 'N/A')
|
255 |
+
library = model_data.get('library_name', 'N/A')
|
256 |
+
result += f"**π Statistics:**\nβ’ **Downloads:** {downloads:,}\nβ’ **Likes:** {likes:,}\nβ’ **Task:** {task}\nβ’ **Library:** {library}\nβ’ **Created:** {model_data.get('createdAt', 'N/A')[:10]}\nβ’ **Updated:** {model_data.get('lastModified', 'N/A')[:10]}\n\n"
|
257 |
+
if 'tags' in model_data and model_data['tags']: result += f"**π·οΈ Tags:** {', '.join(model_data['tags'][:10])}\n\n"
|
258 |
+
model_url = f"{self.base_url}/{model_name}"
|
259 |
+
page_content = self._fetch_with_retry(model_url)
|
260 |
+
if page_content:
|
261 |
+
soup = BeautifulSoup(page_content, 'html.parser')
|
262 |
+
readme_content = soup.find('div', class_=re.compile(r'prose|readme|model-card'))
|
263 |
+
if readme_content:
|
264 |
+
paragraphs = readme_content.find_all('p')[:3]
|
265 |
+
description_parts = []
|
266 |
+
for p in paragraphs:
|
267 |
+
text = p.get_text(strip=True)
|
268 |
+
if len(text) > 30 and not any(skip in text.lower() for skip in ['table of contents', 'toc']):
|
269 |
+
description_parts.append(text)
|
270 |
+
if description_parts:
|
271 |
+
description = ' '.join(description_parts)
|
272 |
+
result += f"**π Description:**\n{description[:800]}{'...' if len(description) > 800 else ''}\n\n"
|
273 |
+
code_examples = self._extract_code_examples(soup)
|
274 |
+
if code_examples:
|
275 |
+
result += "**π» Usage Examples:**\n\n"
|
276 |
+
for i, code_block in enumerate(code_examples[:3], 1):
|
277 |
+
lang = code_block.get('language', 'python')
|
278 |
+
result += f"*Example {i}:*\n```{lang}\n{code_block['code']}\n```\n\n"
|
279 |
+
if task and task != 'N/A':
|
280 |
+
result += f"**π Quick Start Template:**\n"
|
281 |
+
if library == 'transformers':
|
282 |
+
result += f"```python\nfrom transformers import pipeline\n\n# Load the model\nmodel = pipeline('{task}', model='{model_name}')\n\n# Use the model\n# result = model(your_input_here)\nprint(result)\n```\n\n"
|
283 |
+
else:
|
284 |
+
result += f"```python\n# Load and use {model_name}\n# Refer to the documentation for specific usage\n```\n\n"
|
285 |
+
if 'siblings' in model_data:
|
286 |
+
files = [f['rfilename'] for f in model_data['siblings'][:10]]
|
287 |
+
if files:
|
288 |
+
result += f"**π Model Files:** {', '.join(files)}\n\n"
|
289 |
+
result += f"**π Model Page:** {model_url}\n"
|
290 |
+
return result
|
291 |
+
except requests.exceptions.RequestException as e: return f"β Network error: {str(e)}"
|
292 |
+
except Exception as e:
|
293 |
+
logger.error(f"Error in get_model_info: {e}")
|
294 |
+
return f"β Error fetching model info: {str(e)}"
|
295 |
+
|
296 |
+
def get_dataset_info(self, dataset_name: str) -> str:
|
297 |
+
"""
|
298 |
+
Retrieves detailed information about a specific dataset from the Hugging Face Hub.
|
299 |
+
Includes statistics, a description, and a quick-start code snippet showing how to load the dataset.
|
300 |
+
Args:
|
301 |
+
dataset_name (str): The full identifier of the dataset on the Hub, for example 'squad' or 'imdb'.
|
302 |
+
"""
|
303 |
+
try:
|
304 |
+
dataset_name = dataset_name.strip()
|
305 |
+
if not dataset_name: return "Please provide a dataset name."
|
306 |
+
api_url = f"{self.api_url}/datasets/{dataset_name}"
|
307 |
+
response = self.session.get(api_url, timeout=15)
|
308 |
+
if response.status_code == 404: return f"β Dataset '{dataset_name}' not found. Please check the dataset name."
|
309 |
+
elif response.status_code != 200: return f"β Error fetching dataset info (Status: {response.status_code})"
|
310 |
+
dataset_data = response.json()
|
311 |
+
result = f"# π Dataset: {dataset_name}\n\n"
|
312 |
+
downloads = dataset_data.get('downloads', 0)
|
313 |
+
likes = dataset_data.get('likes', 0)
|
314 |
+
result += f"**π Statistics:**\nβ’ **Downloads:** {downloads:,}\nβ’ **Likes:** {likes:,}\nβ’ **Created:** {dataset_data.get('createdAt', 'N/A')[:10]}\nβ’ **Updated:** {dataset_data.get('lastModified', 'N/A')[:10]}\n\n"
|
315 |
+
if 'tags' in dataset_data and dataset_data['tags']: result += f"**π·οΈ Tags:** {', '.join(dataset_data['tags'][:10])}\n\n"
|
316 |
+
dataset_url = f"{self.base_url}/datasets/{dataset_name}"
|
317 |
+
page_content = self._fetch_with_retry(dataset_url)
|
318 |
+
if page_content:
|
319 |
+
soup = BeautifulSoup(page_content, 'html.parser')
|
320 |
+
readme_content = soup.find('div', class_=re.compile(r'prose|readme|dataset-card'))
|
321 |
+
if readme_content:
|
322 |
+
paragraphs = readme_content.find_all('p')[:3]
|
323 |
+
description_parts = []
|
324 |
+
for p in paragraphs:
|
325 |
+
text = p.get_text(strip=True)
|
326 |
+
if len(text) > 30: description_parts.append(text)
|
327 |
+
if description_parts:
|
328 |
+
description = ' '.join(description_parts)
|
329 |
+
result += f"**π Description:**\n{description[:800]}{'...' if len(description) > 800 else ''}\n\n"
|
330 |
+
code_examples = self._extract_code_examples(soup)
|
331 |
+
if code_examples:
|
332 |
+
result += "**π» Usage Examples:**\n\n"
|
333 |
+
for i, code_block in enumerate(code_examples[:3], 1):
|
334 |
+
lang = code_block.get('language', 'python')
|
335 |
+
result += f"*Example {i}:*\n```{lang}\n{code_block['code']}\n```\n\n"
|
336 |
+
result += f"**π Quick Start Template:**\n"
|
337 |
+
result += f"```python\nfrom datasets import load_dataset\n\n# Load the dataset\ndataset = load_dataset('{dataset_name}')\n\n# Explore the dataset\nprint(dataset)\nprint(f\"Dataset keys: {{list(dataset.keys())}}\")\n\n# Access first example\nif 'train' in dataset:\n print(\"First example:\")\n print(dataset['train'][0])\n```\n\n"
|
338 |
+
result += f"**π Dataset Page:** {dataset_url}\n"
|
339 |
+
return result
|
340 |
+
except requests.exceptions.RequestException as e: return f"β Network error: {str(e)}"
|
341 |
+
except Exception as e:
|
342 |
+
logger.error(f"Error in get_dataset_info: {e}")
|
343 |
+
return f"β Error fetching dataset info: {str(e)}"
|
344 |
+
|
345 |
+
def search_models(self, task: str, limit: str = "5") -> str:
|
346 |
+
"""
|
347 |
+
Searches the Hugging Face Hub for models based on a specified task or keyword and returns a list of top models.
|
348 |
+
Each result includes statistics and a quick usage example.
|
349 |
+
Args:
|
350 |
+
task (str): The task to search for, such as 'text-classification', 'image-generation', or 'question-answering'.
|
351 |
+
limit (str): The maximum number of models to return. Defaults to '5'.
|
352 |
+
"""
|
353 |
+
try:
|
354 |
+
task = task.strip()
|
355 |
+
if not task: return "Please provide a search task or keyword."
|
356 |
+
limit = int(limit) if isinstance(limit, str) and limit.isdigit() else 5
|
357 |
+
limit = min(max(limit, 1), 10)
|
358 |
+
params = {'search': task, 'limit': limit * 3, 'sort': 'downloads', 'direction': -1}
|
359 |
+
response = self.session.get(f"{self.api_url}/models", params=params, timeout=20)
|
360 |
+
response.raise_for_status()
|
361 |
+
models = response.json()
|
362 |
+
if not models: return f"β No models found for task: '{task}'. Try different keywords."
|
363 |
+
filtered_models = []
|
364 |
+
for model in models:
|
365 |
+
if (model.get('downloads', 0) > 0 or model.get('likes', 0) > 0 or 'pipeline_tag' in model):
|
366 |
+
filtered_models.append(model)
|
367 |
+
if len(filtered_models) >= limit: break
|
368 |
+
if not filtered_models: filtered_models = models[:limit]
|
369 |
+
result = f"# π Top {len(filtered_models)} Models for '{task}'\n\n"
|
370 |
+
for i, model in enumerate(filtered_models, 1):
|
371 |
+
model_id = model.get('id', 'Unknown')
|
372 |
+
downloads = model.get('downloads', 0)
|
373 |
+
likes = model.get('likes', 0)
|
374 |
+
task_type = model.get('pipeline_tag', 'N/A')
|
375 |
+
library = model.get('library_name', 'N/A')
|
376 |
+
quality_score = ""
|
377 |
+
if downloads > 10000: quality_score = "β Popular"
|
378 |
+
elif downloads > 1000: quality_score = "π₯ Active"
|
379 |
+
elif likes > 10: quality_score = "π Liked"
|
380 |
+
result += f"## {i}. {model_id} {quality_score}\n\n"
|
381 |
+
result += f"**π Stats:**\nβ’ **Downloads:** {downloads:,}\nβ’ **Likes:** {likes}\nβ’ **Task:** {task_type}\nβ’ **Library:** {library}\n\n"
|
382 |
+
if task_type and task_type != 'N/A':
|
383 |
+
result += f"**π Quick Usage:**\n"
|
384 |
+
if library == 'transformers':
|
385 |
+
result += f"```python\nfrom transformers import pipeline\n\n# Load model\nmodel = pipeline('{task_type}', model='{model_id}')\n\n# Use model\nresult = model(\"Your input here\")\nprint(result)\n```\n\n"
|
386 |
+
else:
|
387 |
+
result += f"```python\n# Load and use {model_id}\n# Check model page for specific usage instructions\n```\n\n"
|
388 |
+
result += f"**π Model Page:** {self.base_url}/{model_id}\n\n---\n\n"
|
389 |
+
return result
|
390 |
+
except requests.exceptions.RequestException as e: return f"β Network error: {str(e)}"
|
391 |
+
except Exception as e:
|
392 |
+
logger.error(f"Error in search_models: {e}")
|
393 |
+
return f"β Error searching models: {str(e)}"
|
394 |
+
|
395 |
+
def get_transformers_docs(self, topic: str) -> str:
|
396 |
+
"""
|
397 |
+
Fetches detailed documentation specifically for the Hugging Face Transformers library on a given topic.
|
398 |
+
This provides in-depth explanations, code examples, and parameter descriptions for core library components.
|
399 |
+
Args:
|
400 |
+
topic (str): The Transformers library topic to look up, such as 'pipeline', 'tokenizer', 'trainer', or 'generation'.
|
401 |
+
"""
|
402 |
+
try:
|
403 |
+
topic = topic.strip().lower()
|
404 |
+
if not topic: return "Please provide a topic to search for."
|
405 |
+
docs_url = "https://huggingface.co/docs/transformers"
|
406 |
+
topic_map = {'pipeline': f"{docs_url}/main_classes/pipelines", 'pipelines': f"{docs_url}/main_classes/pipelines", 'tokenizer': f"{docs_url}/main_classes/tokenizer", 'tokenizers': f"{docs_url}/main_classes/tokenizer", 'trainer': f"{docs_url}/main_classes/trainer", 'training': f"{docs_url}/training", 'model': f"{docs_url}/main_classes/model", 'models': f"{docs_url}/main_classes/model", 'configuration': f"{docs_url}/main_classes/configuration", 'config': f"{docs_url}/main_classes/configuration", 'quicktour': f"{docs_url}/quicktour", 'quick': f"{docs_url}/quicktour", 'installation': f"{docs_url}/installation", 'install': f"{docs_url}/installation", 'tutorial': f"{docs_url}/tutorials", 'tutorials': f"{docs_url}/tutorials", 'generation': f"{docs_url}/main_classes/text_generation", 'text_generation': f"{docs_url}/main_classes/text_generation", 'preprocessing': f"{docs_url}/preprocessing", 'preprocess': f"{docs_url}/preprocessing", 'peft': f"{docs_url}/peft", 'lora': f"{docs_url}/peft", 'quantization': f"{docs_url}/main_classes/quantization", 'optimization': f"{docs_url}/perf_train_gpu_one", 'performance': f"{docs_url}/perf_train_gpu_one", 'deployment': f"{docs_url}/deployment", 'custom': f"{docs_url}/custom_models", 'fine-tuning': f"{docs_url}/training", 'finetuning': f"{docs_url}/training"}
|
407 |
+
url = topic_map.get(topic)
|
408 |
+
if not url:
|
409 |
+
for key, value in topic_map.items():
|
410 |
+
if topic in key or key in topic:
|
411 |
+
url = value
|
412 |
+
topic = key
|
413 |
+
break
|
414 |
+
if not url:
|
415 |
+
url = f"{docs_url}/quicktour"
|
416 |
+
topic = "quicktour"
|
417 |
+
content = self._fetch_with_retry(url)
|
418 |
+
if not content: return f"β Could not fetch documentation for '{topic}'. Please try again or visit: {url}"
|
419 |
+
soup = BeautifulSoup(content, 'html.parser')
|
420 |
+
practical_content = self._extract_practical_content(soup, topic)
|
421 |
+
result = f"# π Transformers Documentation: {topic.replace('_', ' ').title()}\n\n"
|
422 |
+
if practical_content['overview']: result += f"**π Overview:**\n{practical_content['overview']}\n\n"
|
423 |
+
if practical_content['installation']: result += f"**βοΈ Installation:**\n{practical_content['installation']}\n\n"
|
424 |
+
if practical_content['code_examples']:
|
425 |
+
result += "**π» Code Examples:**\n\n"
|
426 |
+
for i, code_block in enumerate(practical_content['code_examples'][:4], 1):
|
427 |
+
lang = code_block.get('language', 'python')
|
428 |
+
code_type = code_block.get('type', 'example')
|
429 |
+
result += f"### {code_type.title()} {i}:\n```{lang}\n{code_block['code']}\n```\n\n"
|
430 |
+
if practical_content['usage_instructions']:
|
431 |
+
result += "**π οΈ Step-by-Step Usage:**\n"
|
432 |
+
for i, instruction in enumerate(practical_content['usage_instructions'][:6], 1):
|
433 |
+
result += f"{i}. {instruction}\n"
|
434 |
+
result += "\n"
|
435 |
+
if practical_content['parameters']:
|
436 |
+
result += "**βοΈ Key Parameters:**\n"
|
437 |
+
for param in practical_content['parameters'][:10]:
|
438 |
+
param_type = f" (`{param['type']}`)" if param.get('type') else ""
|
439 |
+
default_val = f" *Default: `{param['default']}`*" if param.get('default') else ""
|
440 |
+
result += f"β’ **`{param['name']}`**{param_type}: {param['description']}{default_val}\n"
|
441 |
+
result += "\n"
|
442 |
+
related_topics = [k for k in topic_map.keys() if k != topic][:5]
|
443 |
+
if related_topics: result += f"**π Related Topics:** {', '.join(related_topics)}\n\n"
|
444 |
+
result += f"**π Full Documentation:** {url}\n"
|
445 |
+
return result
|
446 |
+
except Exception as e:
|
447 |
+
logger.error(f"Error in get_transformers_docs: {e}")
|
448 |
+
return f"β Error fetching Transformers documentation: {str(e)}"
|
449 |
+
|
450 |
+
def get_trending_models(self, limit: str = "10") -> str:
|
451 |
+
"""
|
452 |
+
Fetches a list of the most downloaded models currently trending on the Hugging Face Hub.
|
453 |
+
This is useful for discovering popular and widely-used models.
|
454 |
+
Args:
|
455 |
+
limit (str): The number of trending models to return. Defaults to '10'.
|
456 |
+
"""
|
457 |
+
try:
|
458 |
+
limit = int(limit) if isinstance(limit, str) and limit.isdigit() else 10
|
459 |
+
limit = min(max(limit, 1), 20)
|
460 |
+
params = {'sort': 'downloads', 'direction': -1, 'limit': limit}
|
461 |
+
response = self.session.get(f"{self.api_url}/models", params=params, timeout=20)
|
462 |
+
response.raise_for_status()
|
463 |
+
models = response.json()
|
464 |
+
if not models: return "β Could not fetch trending models."
|
465 |
+
result = f"# π₯ Trending Models (Top {len(models)})\n\n"
|
466 |
+
for i, model in enumerate(models, 1):
|
467 |
+
model_id = model.get('id', 'Unknown')
|
468 |
+
downloads = model.get('downloads', 0)
|
469 |
+
likes = model.get('likes', 0)
|
470 |
+
task = model.get('pipeline_tag', 'N/A')
|
471 |
+
if downloads > 1000000: trend = "π Mega Popular"
|
472 |
+
elif downloads > 100000: trend = "π₯ Very Popular"
|
473 |
+
elif downloads > 10000: trend = "β Popular"
|
474 |
+
else: trend = "π Trending"
|
475 |
+
result += f"## {i}. {model_id} {trend}\n"
|
476 |
+
result += f"β’ **Downloads:** {downloads:,} | **Likes:** {likes} | **Task:** {task}\n"
|
477 |
+
result += f"β’ **Link:** {self.base_url}/{model_id}\n\n"
|
478 |
+
return result
|
479 |
+
except Exception as e:
|
480 |
+
logger.error(f"Error in get_trending_models: {e}")
|
481 |
+
return f"β Error fetching trending models: {str(e)}"
|
482 |
+
|
483 |
+
# Initialize the server
|
484 |
+
hf_server = HuggingFaceInfoServer()
|
485 |
+
|
486 |
+
# Create Gradio interface
|
487 |
+
with gr.Blocks(
|
488 |
+
title="π€ Hugging Face Information Server",
|
489 |
+
theme=gr.themes.Soft(),
|
490 |
+
css="""
|
491 |
+
.gradio-container {
|
492 |
+
font-family: 'Inter', sans-serif;
|
493 |
+
}
|
494 |
+
.main-header {
|
495 |
+
text-align: center;
|
496 |
+
padding: 20px;
|
497 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
498 |
+
color: white;
|
499 |
+
border-radius: 10px;
|
500 |
+
margin-bottom: 20px;
|
501 |
+
}
|
502 |
+
""") as demo:
|
503 |
+
# Header
|
504 |
+
with gr.Row():
|
505 |
+
gr.HTML("""
|
506 |
+
<div class="main-header">
|
507 |
+
<h1>π€ Hugging Face Information Server</h1>
|
508 |
+
<p>Get comprehensive documentation with <strong>real code examples</strong>, <strong>usage instructions</strong>, and <strong>practical content</strong></p>
|
509 |
+
</div>
|
510 |
+
""")
|
511 |
+
|
512 |
+
with gr.Tab("π Documentation Search", elem_id="docs"):
|
513 |
+
gr.Markdown("### Search for documentation with **comprehensive code examples** and **step-by-step instructions**")
|
514 |
+
with gr.Row():
|
515 |
+
with gr.Column(scale=3):
|
516 |
+
doc_query = gr.Textbox(label="π Search Query", placeholder="e.g., tokenizer, pipeline, fine-tuning, peft, trainer, quantization")
|
517 |
+
with gr.Column(scale=1):
|
518 |
+
doc_max_results = gr.Number(label="Max Results", value=2, minimum=1, maximum=5)
|
519 |
+
doc_output = gr.Textbox(label="π Documentation with Examples", lines=25, max_lines=30)
|
520 |
+
with gr.Row():
|
521 |
+
doc_btn = gr.Button("π Search Documentation", variant="primary", size="lg")
|
522 |
+
doc_clear = gr.Button("ποΈ Clear", variant="secondary")
|
523 |
+
gr.Markdown("**Quick Examples:**")
|
524 |
+
with gr.Row():
|
525 |
+
gr.Button("Pipeline", size="sm").click(lambda: "pipeline", outputs=doc_query)
|
526 |
+
gr.Button("Tokenizer", size="sm").click(lambda: "tokenizer", outputs=doc_query)
|
527 |
+
gr.Button("Fine-tuning", size="sm").click(lambda: "fine-tuning", outputs=doc_query)
|
528 |
+
gr.Button("PEFT", size="sm").click(lambda: "peft", outputs=doc_query)
|
529 |
+
doc_btn.click(lambda q, m: hf_server.search_documentation(q, int(m) if str(m).isdigit() else 2), inputs=[doc_query, doc_max_results], outputs=doc_output)
|
530 |
+
doc_clear.click(lambda: "", outputs=doc_output)
|
531 |
+
|
532 |
+
with gr.Tab("π€ Model Information", elem_id="models"):
|
533 |
+
gr.Markdown("### Get detailed model information with **usage examples** and **code snippets**")
|
534 |
+
model_name = gr.Textbox(label="π€ Model Name", placeholder="e.g., bert-base-uncased, gpt2, microsoft/DialoGPT-medium, meta-llama/Llama-2-7b-hf")
|
535 |
+
model_output = gr.Textbox(label="π Model Information + Usage Examples", lines=25, max_lines=30)
|
536 |
+
with gr.Row():
|
537 |
+
model_btn = gr.Button("π Get Model Info", variant="primary", size="lg")
|
538 |
+
model_clear = gr.Button("ποΈ Clear", variant="secondary")
|
539 |
+
gr.Markdown("**Popular Models:**")
|
540 |
+
with gr.Row():
|
541 |
+
gr.Button("BERT", size="sm").click(lambda: "bert-base-uncased", outputs=model_name)
|
542 |
+
gr.Button("GPT-2", size="sm").click(lambda: "gpt2", outputs=model_name)
|
543 |
+
gr.Button("T5", size="sm").click(lambda: "t5-small", outputs=model_name)
|
544 |
+
gr.Button("DistilBERT", size="sm").click(lambda: "distilbert-base-uncased", outputs=model_name)
|
545 |
+
model_btn.click(hf_server.get_model_info, inputs=model_name, outputs=model_output)
|
546 |
+
model_clear.click(lambda: "", outputs=model_output)
|
547 |
+
|
548 |
+
with gr.Tab("π Dataset Information", elem_id="datasets"):
|
549 |
+
gr.Markdown("### Get dataset information with **loading examples** and **usage code**")
|
550 |
+
dataset_name = gr.Textbox(label="π Dataset Name", placeholder="e.g., squad, imdb, glue, common_voice, wikitext")
|
551 |
+
dataset_output = gr.Textbox(label="π Dataset Information + Usage Examples", lines=25, max_lines=30)
|
552 |
+
with gr.Row():
|
553 |
+
dataset_btn = gr.Button("π Get Dataset Info", variant="primary", size="lg")
|
554 |
+
dataset_clear = gr.Button("ποΈ Clear", variant="secondary")
|
555 |
+
gr.Markdown("**Popular Datasets:**")
|
556 |
+
with gr.Row():
|
557 |
+
gr.Button("SQuAD", size="sm").click(lambda: "squad", outputs=dataset_name)
|
558 |
+
gr.Button("IMDB", size="sm").click(lambda: "imdb", outputs=dataset_name)
|
559 |
+
gr.Button("GLUE", size="sm").click(lambda: "glue", outputs=dataset_name)
|
560 |
+
gr.Button("Common Voice", size="sm").click(lambda: "common_voice", outputs=dataset_name)
|
561 |
+
dataset_btn.click(hf_server.get_dataset_info, inputs=dataset_name, outputs=dataset_output)
|
562 |
+
dataset_clear.click(lambda: "", outputs=dataset_output)
|
563 |
+
|
564 |
+
with gr.Tab("π Model Search", elem_id="search"):
|
565 |
+
gr.Markdown("### Search models with **quick usage examples** and **quality indicators**")
|
566 |
+
with gr.Row():
|
567 |
+
with gr.Column(scale=3):
|
568 |
+
search_task = gr.Textbox(label="π Task or Keyword", placeholder="e.g., text-classification, image-generation, question-answering, sentiment-analysis")
|
569 |
+
with gr.Column(scale=1):
|
570 |
+
search_limit = gr.Number(label="Max Results", value=5, minimum=1, maximum=10)
|
571 |
+
search_output = gr.Textbox(label="π Models with Usage Examples", lines=25, max_lines=30)
|
572 |
+
with gr.Row():
|
573 |
+
search_btn = gr.Button("π Search Models", variant="primary", size="lg")
|
574 |
+
search_clear = gr.Button("ποΈ Clear", variant="secondary")
|
575 |
+
gr.Markdown("**Popular Tasks:**")
|
576 |
+
with gr.Row():
|
577 |
+
gr.Button("Text Classification", size="sm").click(lambda: "text-classification", outputs=search_task)
|
578 |
+
gr.Button("Question Answering", size="sm").click(lambda: "question-answering", outputs=search_task)
|
579 |
+
gr.Button("Text Generation", size="sm").click(lambda: "text-generation", outputs=search_task)
|
580 |
+
gr.Button("Image Classification", size="sm").click(lambda: "image-classification", outputs=search_task)
|
581 |
+
search_btn.click(lambda task, limit: hf_server.search_models(task, int(limit) if str(limit).isdigit() else 5), inputs=[search_task, search_limit], outputs=search_output)
|
582 |
+
search_clear.click(lambda: "", outputs=search_output)
|
583 |
+
|
584 |
+
with gr.Tab("β‘ Transformers Docs", elem_id="transformers"):
|
585 |
+
gr.Markdown("### Get comprehensive Transformers documentation with **detailed examples** and **parameters**")
|
586 |
+
transformers_topic = gr.Textbox(label="π Topic", placeholder="e.g., pipeline, tokenizer, trainer, model, peft, generation, quantization")
|
587 |
+
transformers_output = gr.Textbox(label="π Comprehensive Documentation", lines=25, max_lines=30)
|
588 |
+
with gr.Row():
|
589 |
+
transformers_btn = gr.Button("π Get Documentation", variant="primary", size="lg")
|
590 |
+
transformers_clear = gr.Button("ποΈ Clear", variant="secondary")
|
591 |
+
gr.Markdown("**Core Topics:**")
|
592 |
+
with gr.Row():
|
593 |
+
gr.Button("Pipeline", size="sm").click(lambda: "pipeline", outputs=transformers_topic)
|
594 |
+
gr.Button("Tokenizer", size="sm").click(lambda: "tokenizer", outputs=transformers_topic)
|
595 |
+
gr.Button("Trainer", size="sm").click(lambda: "trainer", outputs=transformers_topic)
|
596 |
+
gr.Button("Generation", size="sm").click(lambda: "generation", outputs=transformers_topic)
|
597 |
+
transformers_btn.click(hf_server.get_transformers_docs, inputs=transformers_topic, outputs=transformers_output)
|
598 |
+
transformers_clear.click(lambda: "", outputs=transformers_output)
|
599 |
+
|
600 |
+
with gr.Tab("π₯ Trending Models", elem_id="trending"):
|
601 |
+
gr.Markdown("### Discover the most popular and trending models")
|
602 |
+
trending_limit = gr.Number(label="Number of Models", value=10, minimum=1, maximum=20)
|
603 |
+
trending_output = gr.Textbox(label="π₯ Trending Models", lines=20, max_lines=25)
|
604 |
+
with gr.Row():
|
605 |
+
trending_btn = gr.Button("π₯ Get Trending Models", variant="primary", size="lg")
|
606 |
+
trending_clear = gr.Button("ποΈ Clear", variant="secondary")
|
607 |
+
trending_btn.click(lambda limit: hf_server.get_trending_models(int(limit) if str(limit).isdigit() else 10), inputs=trending_limit, outputs=trending_output)
|
608 |
+
trending_clear.click(lambda: "", outputs=trending_output)
|
609 |
+
|
610 |
+
# Footer
|
611 |
+
with gr.Row():
|
612 |
+
gr.HTML("""
|
613 |
+
<div style="text-align: center; padding: 20px; color: #666;">
|
614 |
+
<h3>π‘ Features</h3>
|
615 |
+
<p><strong>β
Real code examples</strong> β’ <strong>β
Step-by-step instructions</strong> β’ <strong>β
Parameter documentation</strong> β’ <strong>β
Quality indicators</strong></p>
|
616 |
+
<p><em>Get practical, actionable information, directly from the source.</em></p>
|
617 |
+
<p><a href="https://huggingface.co/spaces/Agents-MCP-Hackathon/HuggingFaceDoc/blob/main/README.md" target="_blank" style="text-decoration: none; color: #4a90e2;">π Read the Guide on Hugging Face Spaces</a></p>
|
618 |
+
</div>
|
619 |
+
""")
|
620 |
+
|
621 |
+
if __name__ == "__main__":
|
622 |
+
print("π Starting Hugging Face Information Server...")
|
623 |
+
print("π Features: Code examples, usage instructions, comprehensive documentation")
|
624 |
+
demo.launch(
|
625 |
+
server_name="0.0.0.0",
|
626 |
+
server_port=7860,
|
627 |
+
show_error=True,
|
628 |
+
share=True # Set to True to get a public link
|
629 |
)
|