File size: 8,373 Bytes
b0ee7e5 5c85daa f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 f61da97 b0ee7e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
from schemas import (
FetchEmailsParams,
ShowEmailParams,
AnalyzeEmailsParams,
DraftReplyParams,
SendReplyParams,
)
from typing import Any, Dict
from email_scraper import scrape_emails_by_text_search, _load_email_db, _save_email_db, _is_date_in_range
from datetime import datetime, timedelta
from typing import List
from openai import OpenAI
import json
from dotenv import load_dotenv
import os
# Load environment variables from .env file
load_dotenv()
# Initialize OpenAI client
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)
def extract_query_info(query: str) -> Dict[str, str]:
"""
Use an LLM to extract sender information and date range from a user query.
Returns {"sender_keyword": "company/sender name", "start_date":"DD-MMM-YYYY","end_date":"DD-MMM-YYYY"}.
"""
today_str = datetime.today().strftime("%d-%b-%Y")
five_days_ago = (datetime.today() - timedelta(days=5)).strftime("%d-%b-%Y")
system_prompt = f"""
You are a query parser for email search. Today is {today_str}.
Given a user query, extract the sender/company keyword and date range. Return _only_ valid JSON with:
{{
"sender_keyword": "keyword or company name to search for",
"start_date": "DD-MMM-YYYY",
"end_date": "DD-MMM-YYYY"
}}
Rules:
1. Extract sender keywords from phrases like "from swiggy", "swiggy emails", "mails from amazon", etc.
2. If no time is mentioned, use last 5 days: {five_days_ago} to {today_str}
3. Interpret relative dates as:
- "today" → {today_str} to {today_str}
- "yesterday" → 1 day ago to 1 day ago
- "last week" → 7 days ago to {today_str}
- "last month" → 30 days ago to {today_str}
- "last N days" → N days ago to {today_str}
Examples:
- "show me mails for last week from swiggy"
→ {{"sender_keyword": "swiggy", "start_date": "01-Jun-2025", "end_date": "{today_str}"}}
- "emails from amazon yesterday"
→ {{"sender_keyword": "amazon", "start_date": "06-Jun-2025", "end_date": "06-Jun-2025"}}
- "show flipkart emails"
→ {{"sender_keyword": "flipkart", "start_date": "{five_days_ago}", "end_date": "{today_str}"}}
Return _only_ the JSON object—no extra text.
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": query}
]
resp = client.chat.completions.create(
model="gpt-4o-mini",
temperature=0.0,
messages=messages
)
content = resp.choices[0].message.content.strip()
# Try direct parse; if the model added fluff, strip to the JSON block.
try:
return json.loads(content)
except json.JSONDecodeError:
start = content.find("{")
end = content.rfind("}") + 1
return json.loads(content[start:end])
def fetch_emails(query: str) -> Dict:
"""
Fetch emails based on a natural language query that contains sender information and date range.
Now uses text-based search and returns only summary information, not full content.
Args:
query: The natural language query (e.g., "show me mails for last week from swiggy")
Returns:
Dict with query_info, email_summary, analysis, and email_count
"""
# Extract sender keyword and date range from query
query_info = extract_query_info(query)
sender_keyword = query_info.get("sender_keyword", "")
start_date = query_info.get("start_date")
end_date = query_info.get("end_date")
print(f"Searching for emails with keyword '{sender_keyword}' between {start_date} and {end_date}")
# Use the new text-based search function
full_emails = scrape_emails_by_text_search(sender_keyword, start_date, end_date)
if not full_emails:
return {
"query_info": query_info,
"email_summary": [],
"analysis": {"summary": f"No emails found for '{sender_keyword}' in the specified date range.", "insights": []},
"email_count": 0
}
# Create summary version without full content
email_summary = []
for email in full_emails:
summary_email = {
"date": email.get("date"),
"time": email.get("time"),
"subject": email.get("subject"),
"from": email.get("from", "Unknown Sender"),
"message_id": email.get("message_id")
# Note: Removed 'content' to keep response clean
}
email_summary.append(summary_email)
# Auto-analyze the emails for insights
analysis = analyze_emails(full_emails) # Use full emails for analysis but don't return them
# Return summary info with analysis
return {
"query_info": query_info,
"email_summary": email_summary,
"analysis": analysis,
"email_count": len(full_emails)
}
def show_email(message_id: str) -> Dict:
"""
Retrieve the full email record (date, time, subject, content, etc.)
from the local cache by message_id.
"""
db = _load_email_db() # returns { sender_email: { "emails": [...], "last_scraped": ... }, ... }
# Search each sender's email list
for sender_data in db.values():
for email in sender_data.get("emails", []):
if email.get("message_id") == message_id:
return email
# If we didn't find it, raise or return an error structure
raise ValueError(f"No email found with message_id '{message_id}'")
def draft_reply(email: Dict, tone: str) -> str:
# call LLM to generate reply
# return a dummy reply for now
print(f"Drafting reply for email {email['id']} with tone: {tone}")
return f"Drafted reply for email {email['id']} with tone {tone}."
...
def send_reply(message_id: str, reply_body: str) -> Dict:
# SMTP / Gmail API send
print(f"Sending reply to message {message_id} with body: {reply_body}")
...
def analyze_emails(emails: List[Dict]) -> Dict:
"""
Summarize and extract insights from a list of emails.
Returns a dict with this schema:
{
"summary": str, # a concise overview of all emails
"insights": [str, ...] # list of key observations or stats
}
"""
if not emails:
return {"summary": "No emails to analyze.", "insights": []}
# 1) Create a simplified email summary for analysis (without full content)
simplified_emails = []
for email in emails:
simplified_email = {
"date": email.get("date"),
"time": email.get("time"),
"subject": email.get("subject"),
"from": email.get("from", "Unknown Sender"),
"content_preview": email.get("content", "")[:200] + "..." if email.get("content") else ""
}
simplified_emails.append(simplified_email)
emails_payload = json.dumps(simplified_emails, ensure_ascii=False)
# 2) Build the LLM prompt
system_prompt = """
You are an expert email analyst. You will be given a JSON array of email objects,
each with keys: date, time, subject, from, content_preview.
Your job is to produce _only_ valid JSON with two fields:
1. summary: a 1–2 sentence high-level overview of these emails.
2. insights: a list of 3–5 bullet-style observations or statistics
(e.g. "5 emails from Swiggy", "mostly promotional content", "received over 3 days").
Focus on metadata like senders, subjects, dates, and patterns rather than detailed content analysis.
Output exactly:
{
"summary": "...",
"insights": ["...", "...", ...]
}
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Here are the emails:\n{emails_payload}"}
]
# 3) Call the LLM
response = client.chat.completions.create(
model="gpt-4o-mini",
temperature=0.0,
messages=messages
)
# 4) Parse and return
content = response.choices[0].message.content.strip()
try:
return json.loads(content)
except json.JSONDecodeError:
# In case the model outputs extra text, extract the JSON block
start = content.find('{')
end = content.rfind('}') + 1
return json.loads(content[start:end])
TOOL_MAPPING = {
"fetch_emails": fetch_emails,
"show_email": show_email,
"analyze_emails": analyze_emails,
"draft_reply": draft_reply,
"send_reply": send_reply,
} |