devangshrivastava
agentic_base made
4f321e9
raw
history blame
5.82 kB
from schemas import (
FetchEmailsParams,
ShowEmailParams,
AnalyzeEmailsParams,
DraftReplyParams,
SendReplyParams,
)
from typing import Any, Dict
from email_scraper import scrape_emails_from_sender, _load_email_db, _save_email_db, _is_date_in_range
from datetime import datetime
from typing import List
from openai import OpenAI
import json
from dotenv import load_dotenv
import os
# Load environment variables from .env file
load_dotenv()
# Initialize OpenAI client
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)
def extract_date_range(query: str) -> Dict[str, str]:
"""
Use an LLM to extract a date range from a user query.
Returns {"start_date":"DD-MMM-YYYY","end_date":"DD-MMM-YYYY"}.
"""
today_str = datetime.today().strftime("%d-%b-%Y")
system_prompt = f"""
You are a date‐range extractor. Today is {today_str}.
Given a user query (in natural language), return _only_ valid JSON with:
{{
"start_date": "DD-MMM-YYYY",
"end_date": "DD-MMM-YYYY"
}}
Interpret relative dates as:
- "today" → {today_str} to {today_str}
- "yesterday" → 1 day ago to 1 day ago
- "last week" → 7 days ago to {today_str}
- "last month" → 30 days ago to {today_str}
- "last N days" → N days ago to {today_str}
Examples:
- "emails from dev agarwal last week"
→ {{ "start_date": "01-Jun-2025", "end_date": "{today_str}" }}
- "show me emails yesterday"
→ {{ "start_date": "06-Jun-2025", "end_date": "06-Jun-2025" }}
Return _only_ the JSON object—no extra text.
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": query}
]
resp = client.chat.completions.create(
model="gpt-4o-mini",
temperature=0.0,
messages=messages
)
content = resp.choices[0].message.content.strip()
# Try direct parse; if the model added fluff, strip to the JSON block.
try:
return json.loads(content)
except json.JSONDecodeError:
start = content.find("{")
end = content.rfind("}") + 1
return json.loads(content[start:end])
def fetch_emails(email: str, query: str) -> Dict:
"""
Fetch emails from a sender within a date range extracted from the query.
Now returns both date info and emails.
Args:
email: The sender's email address
query: The original user query (for date extraction)
Returns:
Dict with date_info and emails
"""
# Extract date range from query
date_info = extract_date_range(query)
start_date = date_info.get("start_date")
end_date = date_info.get("end_date")
# Fetch emails using the existing scraper
emails = scrape_emails_from_sender(email, start_date, end_date)
# Return both date info and emails
return {
"date_info": date_info,
"emails": emails,
"email_count": len(emails)
}
def show_email(message_id: str) -> Dict:
"""
Retrieve the full email record (date, time, subject, content, etc.)
from the local cache by message_id.
"""
db = _load_email_db() # returns { sender_email: { "emails": [...], "last_scraped": ... }, ... }
# Search each sender's email list
for sender_data in db.values():
for email in sender_data.get("emails", []):
if email.get("message_id") == message_id:
return email
# If we didn't find it, raise or return an error structure
raise ValueError(f"No email found with message_id '{message_id}'")
def draft_reply(email: Dict, tone: str) -> str:
# call LLM to generate reply
# return a dummy reply for now
print(f"Drafting reply for email {email['id']} with tone: {tone}")
return f"Drafted reply for email {email['id']} with tone {tone}."
...
def send_reply(message_id: str, reply_body: str) -> Dict:
# SMTP / Gmail API send
print(f"Sending reply to message {message_id} with body: {reply_body}")
...
def analyze_emails(emails: List[Dict]) -> Dict:
"""
Summarize and extract insights from a list of emails.
Returns a dict with this schema:
{
"summary": str, # a concise overview of all emails
"insights": [str, ...] # list of key observations or stats
}
"""
# 1) Prepare the email payload
emails_payload = json.dumps(emails, ensure_ascii=False)
# 2) Build the LLM prompt
system_prompt = """
You are an expert email analyst. You will be given a JSON array of email objects,
each with keys: date, time, subject, content, message_id.
Your job is to produce _only_ valid JSON with two fields:
1. summary: a 1–2 sentence high-level overview of these emails.
2. insights: a list of 3–5 bullet-style observations or statistics
(e.g. "2 job offers found", "overall positive tone", "next action: reply").
Output exactly:
{
"summary": "...",
"insights": ["...", "...", ...]
}
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Here are the emails:\n{emails_payload}"}
]
# 3) Call the LLM
response = client.chat.completions.create(
model="gpt-4o-mini",
temperature=0.0,
messages=messages
)
# 4) Parse and return
content = response.choices[0].message.content.strip()
try:
return json.loads(content)
except json.JSONDecodeError:
# In case the model outputs extra text, extract the JSON block
start = content.find('{')
end = content.rfind('}') + 1
return json.loads(content[start:end])
TOOL_MAPPING = {
"fetch_emails": fetch_emails,
"show_email": show_email,
"analyze_emails": analyze_emails,
"draft_reply": draft_reply,
"send_reply": send_reply,
}