iLearn / memory_logic.py
broadfield-dev's picture
Update memory_logic.py
38b39e1 verified
import os
import json
import time
from datetime import datetime
import logging
import re
import threading
try:
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
except ImportError:
SentenceTransformer, faiss, np = None, None, None
logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.")
try:
import sqlite3
except ImportError:
sqlite3 = None
logging.warning("sqlite3 module not available. SQLite backend will be unavailable.")
try:
from datasets import load_dataset, Dataset
except ImportError:
load_dataset, Dataset = None, None
logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
logger = logging.getLogger(__name__)
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
if logging.getLogger(lib_name):
logging.getLogger(lib_name).setLevel(logging.WARNING)
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper()
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db")
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")
_embedder = None
_dimension = 384
_faiss_memory_index = None
_memory_items_list = []
_faiss_rules_index = None
_rules_items_list = []
_initialized = False
_init_lock = threading.Lock()
def _get_sqlite_connection():
if not sqlite3:
raise ImportError("sqlite3 module is required for SQLite backend but not found.")
db_dir = os.path.dirname(SQLITE_DB_PATH)
if db_dir and not os.path.exists(db_dir):
os.makedirs(db_dir, exist_ok=True)
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
def _init_sqlite_tables():
if STORAGE_BACKEND != "SQLITE" or not sqlite3:
return
try:
with _get_sqlite_connection() as conn:
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS memories (
id INTEGER PRIMARY KEY AUTOINCREMENT,
memory_json TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS rules (
id INTEGER PRIMARY KEY AUTOINCREMENT,
rule_text TEXT NOT NULL UNIQUE,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.commit()
logger.info("SQLite tables for memories and rules checked/created.")
except Exception as e:
logger.error(f"SQLite table initialization error: {e}", exc_info=True)
def initialize_memory_system():
global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
with _init_lock:
if _initialized:
logger.info("Memory system already initialized.")
return
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
init_start_time = time.time()
if not SentenceTransformer or not faiss or not np:
logger.error("Core RAG libraries (SentenceTransformers, FAISS, NumPy) not available. Cannot initialize semantic memory.")
_initialized = False
return
if not _embedder:
try:
logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
_dimension = _embedder.get_sentence_embedding_dimension() or 384
logger.info(f"SentenceTransformer loaded. Dimension: {_dimension}")
except Exception as e:
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
_initialized = False
return
if STORAGE_BACKEND == "SQLITE":
_init_sqlite_tables()
logger.info("Loading memories...")
temp_memories_json = []
if STORAGE_BACKEND == "RAM":
_memory_items_list = []
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
try:
with _get_sqlite_connection() as conn:
temp_memories_json = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
try:
logger.info(f"Attempting to load memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "memory_json" in dataset["train"].column_names:
temp_memories_json = [m_json for m_json in dataset["train"]["memory_json"] if isinstance(m_json, str)]
else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} for memories not found or 'memory_json' column missing.")
except Exception as e: logger.error(f"Error loading memories from HF Dataset ({HF_MEMORY_DATASET_REPO}): {e}")
_memory_items_list = temp_memories_json
logger.info(f"Loaded {len(_memory_items_list)} memory items from {STORAGE_BACKEND}.")
_faiss_memory_index = faiss.IndexFlatL2(_dimension)
if _memory_items_list:
logger.info(f"Building FAISS index for {len(_memory_items_list)} memories...")
texts_to_embed_mem = []
for mem_json_str in _memory_items_list:
try:
mem_obj = json.loads(mem_json_str)
text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}"
texts_to_embed_mem.append(text)
except json.JSONDecodeError:
logger.warning(f"Skipping malformed memory JSON for FAISS indexing: {mem_json_str[:100]}")
if texts_to_embed_mem:
try:
embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension:
_faiss_memory_index.add(embeddings_np)
else: logger.error(f"Memory embeddings shape error. Expected ({len(texts_to_embed_mem)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}")
logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}")
logger.info("Loading rules...")
temp_rules_text = []
if STORAGE_BACKEND == "RAM":
_rules_items_list = []
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
try:
with _get_sqlite_connection() as conn:
temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules ORDER BY created_at ASC")]
except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
try:
logger.info(f"Attempting to load rules from HF Dataset: {HF_RULES_DATASET_REPO}")
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "rule_text" in dataset["train"].column_names:
temp_rules_text = [r_text for r_text in dataset["train"]["rule_text"] if isinstance(r_text, str) and r_text.strip()]
else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} for rules not found or 'rule_text' column missing.")
except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}")
_rules_items_list = sorted(list(set(temp_rules_text)))
logger.info(f"Loaded {len(_rules_items_list)} rule items from {STORAGE_BACKEND}.")
_faiss_rules_index = faiss.IndexFlatL2(_dimension)
if _rules_items_list:
logger.info(f"Building FAISS index for {len(_rules_items_list)} rules...")
if _rules_items_list:
try:
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
_faiss_rules_index.add(embeddings_np)
else: logger.error(f"Rule embeddings shape error. Expected ({len(_rules_items_list)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
except Exception as e_faiss_rule: logger.error(f"Error building FAISS rule index: {e_faiss_rule}")
logger.info(f"FAISS rules index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
_initialized = True
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
global _memory_items_list, _faiss_memory_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_memory_index:
return False, "Memory system or embedder not initialized for adding memory."
memory_obj = {
"user_input": user_input,
"metrics": metrics,
"bot_response": bot_response,
"timestamp": datetime.utcnow().isoformat()
}
memory_json_str = json.dumps(memory_obj)
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
try:
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
if embedding_np.shape != (1, _dimension):
logger.error(f"Memory embedding shape error: {embedding_np.shape}. Expected (1, {_dimension})")
return False, "Embedding shape error."
_faiss_memory_index.add(embedding_np)
_memory_items_list.append(memory_json_str)
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
logger.info(f"Pushing {len(_memory_items_list)} memories to HF Hub: {HF_MEMORY_DATASET_REPO}")
Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Added memory. RAM: {len(_memory_items_list)}, FAISS: {_faiss_memory_index.ntotal}")
return True, "Memory added successfully."
except Exception as e:
logger.error(f"Error adding memory entry: {e}", exc_info=True)
return False, f"Error adding memory: {e}"
def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
logger.debug("Cannot retrieve memories: Embedder, FAISS index not ready, or index is empty.")
return []
try:
query_embedding = _embedder.encode([query], convert_to_tensor=False)
query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
if query_embedding_np.shape[1] != _dimension:
logger.error(f"Query embedding dimension mismatch. Expected {_dimension}, got {query_embedding_np.shape[1]}")
return []
distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
results = []
for i in indices[0]:
if 0 <= i < len(_memory_items_list):
try:
results.append(json.loads(_memory_items_list[i]))
except json.JSONDecodeError:
logger.warning(f"Could not parse memory JSON from list at index {i}")
else:
logger.warning(f"FAISS index {i} out of bounds for memory_items_list (len: {len(_memory_items_list)})")
logger.debug(f"Retrieved {len(results)} memories semantically for query: '{query[:50]}...'")
return results
except Exception as e:
logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
return []
def add_rule_entry(rule_text: str) -> tuple[bool, str]:
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_rules_index:
return False, "Rule system or embedder not initialized."
rule_text = rule_text.strip()
if not rule_text: return False, "Rule text cannot be empty."
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
return False, "Invalid rule format."
if rule_text in _rules_items_list:
return False, "duplicate"
try:
embedding = _embedder.encode([rule_text], convert_to_tensor=False)
embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
if embedding_np.shape != (1, _dimension):
return False, "Rule embedding shape error."
_faiss_rules_index.add(embedding_np)
_rules_items_list.append(rule_text)
_rules_items_list.sort()
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
logger.info(f"Pushing {len(_rules_items_list)} rules to HF Hub: {HF_RULES_DATASET_REPO}")
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Added rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
return True, "Rule added successfully."
except Exception as e:
logger.error(f"Error adding rule entry: {e}", exc_info=True)
return False, f"Error adding rule: {e}"
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_rules_index or _faiss_rules_index.ntotal == 0:
return []
try:
query_embedding = _embedder.encode([query], convert_to_tensor=False)
query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
if query_embedding_np.shape[1] != _dimension: return []
distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
results = [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
logger.debug(f"Retrieved {len(results)} rules semantically for query: '{query[:50]}...'")
return results
except Exception as e:
logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
return []
def remove_rule_entry(rule_text_to_delete: str) -> bool:
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_rules_index: return False
rule_text_to_delete = rule_text_to_delete.strip()
if rule_text_to_delete not in _rules_items_list:
return False
try:
_rules_items_list.remove(rule_text_to_delete)
_rules_items_list.sort()
new_faiss_rules_index = faiss.IndexFlatL2(_dimension)
if _rules_items_list:
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
new_faiss_rules_index.add(embeddings_np)
else:
logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.")
_rules_items_list.append(rule_text_to_delete)
_rules_items_list.sort()
return False
_faiss_rules_index = new_faiss_rules_index
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Removed rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
return True
except Exception as e:
logger.error(f"Error removing rule entry: {e}", exc_info=True)
return False
def get_all_rules_cached() -> list[str]:
if not _initialized: initialize_memory_system()
return list(_rules_items_list)
def get_all_memories_cached() -> list[dict]:
if not _initialized: initialize_memory_system()
mem_dicts = []
for mem_json_str in _memory_items_list:
try: mem_dicts.append(json.loads(mem_json_str))
except: pass
return mem_dicts
def clear_all_memory_data_backend() -> bool:
global _memory_items_list, _faiss_memory_index
if not _initialized: initialize_memory_system()
success = True
try:
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
_memory_items_list = []
if _faiss_memory_index: _faiss_memory_index.reset()
logger.info("All memories cleared from backend and in-memory stores.")
except Exception as e:
logger.error(f"Error clearing all memory data: {e}")
success = False
return success
def clear_all_rules_data_backend() -> bool:
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
success = True
try:
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
_rules_items_list = []
if _faiss_rules_index: _faiss_rules_index.reset()
logger.info("All rules cleared from backend and in-memory stores.")
except Exception as e:
logger.error(f"Error clearing all rules data: {e}")
success = False
return success
def load_rules_from_file(filepath: str | None):
if not filepath:
logger.info("LOAD_RULES_FILE environment variable not set. Skipping rules loading from file.")
return 0, 0, 0
if not os.path.exists(filepath):
logger.warning(f"LOAD_RULES: Specified rules file not found: {filepath}. Skipping loading.")
return 0, 0, 0
added_count, skipped_count, error_count = 0, 0, 0
potential_rules = []
try:
with open(filepath, 'r', encoding='utf-8') as f:
content = f.read()
except Exception as e:
logger.error(f"LOAD_RULES: Error reading file {filepath}: {e}", exc_info=False)
return 0, 0, 1
if not content.strip():
logger.info(f"LOAD_RULES: File {filepath} is empty. Skipping loading.")
return 0, 0, 0
file_name_lower = filepath.lower()
if file_name_lower.endswith(".txt"):
potential_rules = content.split("\n\n---\n\n")
if len(potential_rules) == 1 and "\n" in content:
potential_rules = [r.strip() for r in content.splitlines() if r.strip()]
elif file_name_lower.endswith(".jsonl"):
for line_num, line in enumerate(content.splitlines()):
line = line.strip()
if line:
try:
rule_text_in_json_string = json.loads(line)
if isinstance(rule_text_in_json_string, str):
potential_rules.append(rule_text_in_json_string)
else:
logger.warning(f"LOAD_RULES (JSONL): Line {line_num+1} in {filepath} did not contain a string value. Got: {type(rule_text_in_json_string)}")
error_count +=1
except json.JSONDecodeError:
logger.warning(f"LOAD_RULES (JSONL): Line {line_num+1} in {filepath} failed to parse as JSON: {line[:100]}")
error_count +=1
else:
logger.error(f"LOAD_RULES: Unsupported file type for rules: {filepath}. Must be .txt or .jsonl")
return 0, 0, 1
valid_potential_rules = [r.strip() for r in potential_rules if r.strip()]
total_to_process = len(valid_potential_rules)
if total_to_process == 0 and error_count == 0:
logger.info(f"LOAD_RULES: No valid rule segments found in {filepath} to process.")
return 0, 0, 0
elif total_to_process == 0 and error_count > 0:
logger.warning(f"LOAD_RULES: No valid rule segments found to process. Encountered {error_count} parsing/format errors in {filepath}.")
return 0, 0, error_count
logger.info(f"LOAD_RULES: Attempting to add {total_to_process} potential rules from {filepath}...")
for idx, rule_text in enumerate(valid_potential_rules):
success, status_msg = add_rule_entry(rule_text)
if success:
added_count += 1
elif status_msg == "duplicate":
skipped_count += 1
else:
logger.warning(f"LOAD_RULES: Failed to add rule from {filepath} (segment {idx+1}): '{rule_text[:50]}...'. Status: {status_msg}")
error_count += 1
logger.info(f"LOAD_RULES: Finished processing {filepath}. Added: {added_count}, Skipped (duplicates): {skipped_count}, Errors: {error_count}.")
return added_count, skipped_count, error_count
def load_memories_from_file(filepath: str | None):
if not filepath:
logger.info("LOAD_MEMORIES_FILE environment variable not set. Skipping memories loading from file.")
return 0, 0, 0
if not os.path.exists(filepath):
logger.warning(f"LOAD_MEMORIES: Specified memories file not found: {filepath}. Skipping loading.")
return 0, 0, 0
added_count, format_error_count, save_error_count = 0, 0, 0
memory_objects_to_process = []
try:
with open(filepath, 'r', encoding='utf-8') as f:
content = f.read()
except Exception as e:
logger.error(f"LOAD_MEMORIES: Error reading file {filepath}: {e}", exc_info=False)
return 0, 1, 0
if not content.strip():
logger.info(f"LOAD_MEMORIES: File {filepath} is empty. Skipping loading.")
return 0, 0, 0
file_ext = os.path.splitext(filepath.lower())[1]
if file_ext == ".json":
try:
parsed_json = json.loads(content)
if isinstance(parsed_json, list):
memory_objects_to_process = parsed_json
elif isinstance(parsed_json, dict):
memory_objects_to_process = [parsed_json]
else:
logger.warning(f"LOAD_MEMORIES (.json): File content is not a JSON list or object in {filepath}. Type: {type(parsed_json)}")
format_error_count = 1
except json.JSONDecodeError as e:
logger.warning(f"LOAD_MEMORIES (.json): Invalid JSON file {filepath}. Error: {e}")
format_error_count = 1
elif file_ext == ".jsonl":
for line_num, line in enumerate(content.splitlines()):
line = line.strip()
if line:
try:
memory_objects_to_process.append(json.loads(line))
except json.JSONDecodeError:
logger.warning(f"LOAD_MEMORIES (.jsonl): Line {line_num+1} in {filepath} parse error: {line[:100]}")
format_error_count += 1
else:
logger.error(f"LOAD_MEMORIES: Unsupported file type for memories: {filepath}. Must be .json or .jsonl")
return 0, 1, 0
total_to_process = len(memory_objects_to_process)
if total_to_process == 0 and format_error_count > 0 :
logger.warning(f"LOAD_MEMORIES: File parsing failed for {filepath}. Found {format_error_count} format errors and no processable objects.")
return 0, format_error_count, 0
elif total_to_process == 0:
logger.info(f"LOAD_MEMORIES: No memory objects found in {filepath} after parsing.")
return 0, 0, 0
logger.info(f"LOAD_MEMORIES: Attempting to add {total_to_process} memory objects from {filepath}...")
for idx, mem_data in enumerate(memory_objects_to_process):
if isinstance(mem_data, dict) and all(k in mem_data for k in ["user_input", "bot_response", "metrics"]):
success, _ = add_memory_entry(mem_data["user_input"], mem_data["metrics"], mem_data["bot_response"])
if success:
added_count += 1
else:
logger.warning(f"LOAD_MEMORIES: Failed to save memory object from {filepath} (segment {idx+1}). Data: {str(mem_data)[:100]}")
save_error_count += 1
else:
logger.warning(f"LOAD_MEMORIES: Skipped invalid memory object structure in {filepath} (segment {idx+1}): {str(mem_data)[:100]}")
format_error_count += 1
logger.info(f"LOAD_MEMORIES: Finished processing {filepath}. Added: {added_count}, Format/Structure Errors: {format_error_count}, Save Errors: {save_error_count}.")
return added_count, format_error_count, save_error_count
def process_rules_from_text_blob(rules_text: str, progress_callback=None) -> dict:
if not rules_text.strip():
return {"added": 0, "skipped": 0, "errors": 0, "total": 0}
potential_rules = rules_text.split("\n\n---\n\n")
if len(potential_rules) == 1 and "\n" in rules_text:
potential_rules = [r.strip() for r in rules_text.splitlines() if r.strip()]
unique_rules = sorted(list(set(filter(None, [r.strip() for r in potential_rules]))))
total_unique = len(unique_rules)
if total_unique == 0:
return {"added": 0, "skipped": 0, "errors": 0, "total": 0}
stats = {"added": 0, "skipped": 0, "errors": 0, "total": total_unique}
for idx, rule_text in enumerate(unique_rules):
success, status_msg = add_rule_entry(rule_text)
if success:
stats["added"] += 1
elif status_msg == "duplicate":
stats["skipped"] += 1
else:
stats["errors"] += 1
if progress_callback is not None:
progress_callback((idx + 1) / total_unique, desc=f"Processed {idx+1}/{total_unique} rules...")
return stats
def import_kb_from_kv_dict(kv_dict: dict, progress_callback=None) -> dict:
rules_to_add, memories_to_add = [], []
for key, value in kv_dict.items():
if key.startswith("rule_"):
try:
rules_to_add.append(json.loads(value))
except:
logger.warning(f"KB Dict Import: Bad rule format for key {key}")
elif key.startswith("memory_"):
try:
mem_dict = json.loads(value)
if isinstance(mem_dict, dict) and all(k in mem_dict for k in ['user_input', 'bot_response', 'metrics']):
memories_to_add.append(mem_dict)
except:
logger.warning(f"KB Dict Import: Bad memory format for key {key}")
stats = {"rules_added": 0, "rules_skipped": 0, "rules_errors": 0, "mems_added": 0, "mems_errors": 0}
total_items = len(rules_to_add) + len(memories_to_add)
processed_items = 0
if progress_callback is not None:
progress_callback(0, desc=f"Importing {total_items} items...")
for rule in rules_to_add:
s, m = add_rule_entry(rule)
if s:
stats["rules_added"] += 1
elif m == "duplicate":
stats["rules_skipped"] += 1
else:
stats["rules_errors"] += 1
processed_items += 1
if progress_callback is not None and total_items > 0:
progress_callback(processed_items / total_items, desc=f"Processing item {processed_items}/{total_items}...")
for mem in memories_to_add:
s, _ = add_memory_entry(mem['user_input'], mem['metrics'], mem['bot_response'])
if s:
stats["mems_added"] += 1
else:
stats["mems_errors"] += 1
processed_items += 1
if progress_callback is not None and total_items > 0:
progress_callback(processed_items / total_items, desc=f"Processing item {processed_items}/{total_items}...")
return stats
FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
def save_faiss_indices_to_disk():
if not _initialized or not faiss: return
faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
try:
faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
logger.info(f"Memory FAISS index saved to disk ({_faiss_memory_index.ntotal} items).")
except Exception as e: logger.error(f"Error saving memory FAISS index: {e}")
if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
try:
faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
logger.info(f"Rules FAISS index saved to disk ({_faiss_rules_index.ntotal} items).")
except Exception as e: logger.error(f"Error saving rules FAISS index: {e}")
def load_faiss_indices_from_disk():
global _faiss_memory_index, _faiss_rules_index
if not _initialized or not faiss: return
if os.path.exists(FAISS_MEMORY_PATH) and _faiss_memory_index:
try:
logger.info(f"Loading memory FAISS index from {FAISS_MEMORY_PATH}...")
_faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).")
if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0:
logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.")
except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.")
if os.path.exists(FAISS_RULES_PATH) and _faiss_rules_index:
try:
logger.info(f"Loading rules FAISS index from {FAISS_RULES_PATH}...")
_faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)
logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).")
if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0:
logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.")
except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.")