File size: 29,129 Bytes
ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 b3f97e9 ecd3503 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
import sys
import os
import re
import json
import base64
from io import BytesIO
from PIL import Image
import argparse
from inference_engine.safe_persis_shared_vis_python_exe import PythonExecutor, ImageRuntime
from openai import OpenAI
import anthropic
def encode_image(image):
"""
Convert a PIL.Image object or image file path to base64-encoded string, and get resolution info.
Args:
image: Can be a PIL.Image object or image file path.
Returns:
dict with keys:
- 'base64': base64-encoded string
- 'width': width in pixels
- 'height': height in pixels
- 'resolution': string "widthxheight"
"""
img_obj = None
if isinstance(image, str):
# Handle file path
img_obj = Image.open(image)
with open(image, "rb") as image_file:
base64_str = base64.b64encode(image_file.read()).decode('utf-8')
else:
# Handle PIL.Image object
img_obj = image
buffered = BytesIO()
image.save(buffered, format='PNG')
base64_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
width, height = img_obj.size
return {
'base64': base64_str,
'width': width,
'height': height
}
def encode_image_with_resize(image):
"""
Convert a PIL.Image object or image file path to base64-encoded string, get resolution info.
If resolution > 1024x1024, resize to half.
Args:
image: Can be a PIL.Image object or image file path
Returns:
dict with keys:
- 'base64': base64-encoded string
- 'width': width in pixels
- 'height': height in pixels
- 'resolution': string "widthxheight"
"""
img_obj = None
if isinstance(image, str):
img_obj = Image.open(image)
else:
img_obj = image
# Resize if larger than 1024x1024
width, height = img_obj.size
if width > 1024 or height > 1024:
new_size = (width // 2, height // 2)
img_obj = img_obj.resize(new_size, Image.LANCZOS)
width, height = img_obj.size
buffered = BytesIO()
img_obj.save(buffered, format='PNG')
base64_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
return {
'base64': base64_str,
'width': width,
'height': height,
'resolution': f"{width}x{height}"
}
def check(evaluator, pred_ans, real_ans):
if len(pred_ans) == 0:
return []
correctness = evaluator.score(pred_ans, real_ans)
return correctness
def execute_codes(codes, messages, executor: PythonExecutor):
no_code_idx = []
codes_use = []
for i, code in enumerate(codes):
if code == "":
no_code_idx.append(i)
else:
codes_use.append(code)
batch_results = executor.batch_apply(codes_use, messages)
return batch_results, no_code_idx
def process_prompt_init(question, image_path_list, prompt_template, prompt_type, api_name):
with open(prompt_template, "r") as fin:
sys = json.load(fin)
prompt_prefix = sys[prompt_type]
image_path = image_path_list[0]
if "<IMAGE_PLACE_HOLDER_0>" in question:
if "no_tool" in prompt_type:
if "claude" in api_name:
img_result = encode_image_with_resize(image_path)
else:
img_result = encode_image(image_path)
image_base64 = img_result['base64']
question_with_options = question
question = prompt_prefix.format(query=question_with_options)
parts = question.split("<IMAGE_PLACE_HOLDER_0>")
content = []
# Add text before image (if any)
if parts[0].strip():
content.append({"type": "text", "text": parts[0].strip()})
# Add image
content.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}})
# Add text after image (if any)
if len(parts) > 1 and parts[1].strip():
content.append({"type": "text", "text": parts[1].strip()})
messages = [
{
"role": "user",
"content": content
}
]
return messages
else:
if "claude" in api_name:
img_result = encode_image_with_resize(image_path)
else:
img_result = encode_image(image_path)
image_base64 = img_result['base64']
width = img_result['width']
height = img_result['height']
question_with_options = question
question = prompt_prefix.format(query=question_with_options, width=str(width), height=str(height))
# Split question into parts
parts = question.split("<IMAGE_PLACE_HOLDER_0>")
# Build message with image_clue tags
content = []
# Add text before image (if any)
if parts[0].strip():
content.append({"type": "text", "text": parts[0].strip()})
# Add image with tags
content.append({"type": "text", "text": "<image_clue_0>"})
content.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}})
content.append({"type": "text", "text": "</image_clue_0>\n\n"})
# Add text after image (if any)
if len(parts) > 1 and parts[1].strip():
content.append({"type": "text", "text": parts[1].strip()})
messages = [
{
"role": "user",
"content": content
}
]
return messages
else:
if "no_tool" in prompt_type:
if "claude" in api_name:
img_result = encode_image_with_resize(image_path)
else:
img_result = encode_image(image_path)
image_base64 = img_result['base64']
question_with_options = question
messages = [
{
"role": "user",
"content": [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}] + [{"type": "text", "text": prompt_prefix.format(query=question_with_options)}]
}
]
return messages
else:
if "claude" in api_name:
img_result = encode_image_with_resize(image_path)
else:
img_result = encode_image(image_path)
image_base64 = img_result['base64']
width = img_result['width']
height = img_result['height']
question_with_options = question
messages = [
{
"role": "user",
"content": [{"type": "text", "text": "<image_clue_0>"}] + [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}] + [{"type": "text", "text": "</image_clue_0>\n\n"}] + [{"type": "text", "text": prompt_prefix.format(query=question_with_options, width=str(width), height=str(height))}]
}
]
return messages
def process_prompt_init_multi_images(question, image_path_list, prompt_template, prompt_type, api_name):
with open(prompt_template, "r") as fin:
sys = json.load(fin)
prompt_prefix = sys[prompt_type]
# Prepare image data
image_data = []
image_information = ""
for i, image_path in enumerate(image_path_list):
if "claude" in api_name:
img_result = encode_image_with_resize(image_path)
else:
img_result = encode_image(image_path)
image_base64 = img_result['base64']
width = img_result['width']
height = img_result['height']
image_data.append({
"index": i,
"base64": image_base64,
"width": width,
"height": height,
"placeholder": f"<IMAGE_PLACE_HOLDER_{i}>"
})
image_information += f"width of image_clue_{i}: {width}, height of image_clue_{i}: {height}\n"
# Format question
formatted_question = prompt_prefix.format(query=question, image_information=image_information)
# Check if placeholder exists
has_placeholders = any(f"<IMAGE_PLACE_HOLDER_{i}>" in formatted_question for i in range(len(image_path_list)))
if has_placeholders:
# Insert images at placeholder positions
if "no_tool" in prompt_type:
content = []
remaining_text = formatted_question
for img_data in image_data:
placeholder = img_data["placeholder"]
if placeholder in remaining_text:
parts = remaining_text.split(placeholder, 1)
if parts[0]:
content.append({"type": "text", "text": parts[0]})
content.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_data['base64']}"}})
remaining_text = parts[1]
if remaining_text:
content.append({"type": "text", "text": remaining_text})
messages = [{"role": "user", "content": content}]
return messages
else:
content = []
remaining_text = formatted_question
for img_data in image_data:
placeholder = img_data["placeholder"]
if placeholder in remaining_text:
parts = remaining_text.split(placeholder, 1)
if parts[0]:
content.append({"type": "text", "text": parts[0]})
i = img_data["index"]
content.append({"type": "text", "text": f"<image_clue_{i}>"})
content.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_data['base64']}"}})
content.append({"type": "text", "text": f"</image_clue_{i}>\n\n"})
remaining_text = parts[1]
if remaining_text:
content.append({"type": "text", "text": remaining_text})
messages = [{"role": "user", "content": content}]
return messages
else:
# Handle as usual if no placeholder
if "no_tool" in prompt_type:
content = []
for i, img_data in enumerate(image_data):
content.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_data['base64']}"}})
content.append({"type": "text", "text": formatted_question})
messages = [{"role": "user", "content": content}]
return messages
else:
content = []
for i, img_data in enumerate(image_data):
content.append({"type": "text", "text": f"<image_clue_{i}>"})
content.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_data['base64']}"}})
content.append({"type": "text", "text": f"</image_clue_{i}>\n\n"})
content.append({"type": "text", "text": formatted_question})
messages = [{"role": "user", "content": content}]
return messages
def update_messages_with_execute_content(image_nums_in_input, messages, images_result, text_result, error_result, image_clue_idx):
if error_result is None:
new_messages = []
image_content = []
for message_item in messages[:-1]:
new_messages.append(message_item)
assistant_message_item = messages[-1]['content']
interpreter_message_text_prefix = [{"type": "text", "text": f"<interpreter>\nText Result:\n{text_result}\nImage Result:\n"}]
if images_result is not None:
print(f"#### image_clue_index: {image_clue_idx},Image_nums_in_input: {image_nums_in_input}, len of images_result: {len(images_result)}")
# for image_base64_item in images_result[image_clue_idx-image_nums_in_input:]:
for image_base64_item in images_result:
interpreter_message_images = [{"type": "text", "text": f"<image_clue_{image_clue_idx}>"}] + [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64_item}"}}] + [{"type": "text", "text": f"</image_clue_{image_clue_idx}>"}]
image_content += interpreter_message_images
image_clue_idx += 1
else:
image_content = [{"type": "text", "text": "None"}]
interpreter_message_text_profill = [{"type": "text", "text": "</interpreter>\n"}]
interpreter_message_item = interpreter_message_text_prefix + image_content + interpreter_message_text_profill
new_messages.append({"role": "assistant", "content": assistant_message_item})
new_messages.append({"role": "user", "content": interpreter_message_item})
else:
new_messages = []
for message_item in messages[:-1]:
new_messages.append(message_item)
assistant_message_item = messages[-1]['content']
interpreter_message_text_prefix = [{"type": "text", "text": f"<interpreter>{error_result}"}]
interpreter_message_text_profill = [{"type": "text", "text": "</interpreter>\n"}]
interpreter_message_item = interpreter_message_text_prefix + interpreter_message_text_profill
new_messages.append({"role": "assistant", "content": assistant_message_item})
new_messages.append({"role": "user", "content": interpreter_message_item})
return new_messages, image_clue_idx
def update_messages_with_code(messages, generated_content):
message_item = {
"role": "assistant",
"content": [{"type": "text", "text": f"{generated_content}</code>\n"}]
}
messages.append(message_item)
return messages
def update_messages_with_text(messages, generated_content):
message_item = {
"role": "assistant",
"content": [{"type": "text", "text": f"{generated_content}"}]
}
messages.append(message_item)
return messages
def call_chatgpt_api(args, messages, client, max_tokens=10000, stop=None, temperature=0.6):
"""Call ChatGPT API with the given messages"""
try:
client_type = args.client_type
api_name = args.api_name
except:
client_type = args['client_type']
api_name = args['api_name']
if client_type == "openai" or client_type == "azure":
response = client.chat.completions.create(
model=api_name,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=1.0,
stop=stop,
timeout=300
)
response_text = response.choices[0].message.content
elif client_type == "anthropic":
message = client.messages.create(
model=api_name,
max_tokens=max_tokens,
messages=messages,
temperature=temperature,
top_p=1.0,
stop_sequences=stop
)
response_text = message.content[0].text if isinstance(message.content, list) else message.content
elif client_type == "vllm":
response = client.chat.completions.create(
model=api_name,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=1.0,
stop=stop
)
response_text = response.choices[0].message.content
else:
print("Your args.client_type must be one of openai, azure, anthropic and vllm.")
return None, None
# Check if stop sequence is encountered
stop_reason = None
if stop and any(s in response_text for s in stop):
for s in stop:
if s in response_text:
stop_reason = s
break
else:
if client_type in ["openai", "azure", "vllm"]:
stop_reason = response.choices[0].finish_reason
else:
stop_reason = "stop"
if "<code>" in response_text:
stop_reason = "</code>"
return response_text, stop_reason
def evaluate_single_data(args, data, client, executor):
try:
prompt_template = args.prompt_template
prompt = args.prompt
exe_code = args.exe_code
max_tokens = args.max_tokens
temperature = args.temperature
api_name = args.api_name
except:
prompt_template = args['prompt_template']
prompt = args['prompt']
exe_code = args['exe_code']
max_tokens = args['max_tokens']
temperature = args['temperature']
api_name = args['api_name']
image_path_list = data['image_path_list']
if "no_tool" in prompt:
if len(image_path_list) == 1:
messages = process_prompt_init(data["question"], image_path_list, prompt_template, prompt, api_name)
elif len(image_path_list) >= 2:
messages = process_prompt_init_multi_images(data["question"], image_path_list, prompt_template, prompt, api_name)
else:
if len(image_path_list) == 1:
prompt = "vistool_with_img_info_v2"
messages = process_prompt_init(data["question"], image_path_list, prompt_template, prompt, api_name)
elif len(image_path_list) >= 2:
prompt = "vistool_with_img_info_multi_image"
messages = process_prompt_init_multi_images(data["question"], image_path_list, prompt_template, prompt, api_name)
# Generate initial response
response_text, pred_stop_reason = call_chatgpt_api(
args,
messages,
client,
max_tokens=max_tokens,
stop=["</code>"] if exe_code else None,
temperature=temperature
)
# Handle response
final_response = response_text
code_execution_count = 0
image_clue_idx = len(image_path_list)
while True:
# Check if code execution is needed
if exe_code and pred_stop_reason == "</code>":
# Extract code to execute
messages = update_messages_with_code(messages, response_text)
code_to_execute = response_text.split("```python")[-1].split("```")[0].strip()
# Execute code
exe_result = execute_codes([code_to_execute], messages, executor)[0][0]
if exe_result is None:
text_result = "None"
images_result = None
else:
output, report = exe_result
if report == "Done":
error_result = None
try:
text_result = exe_result[0]['text']
except:
text_result = None
print("text result is none.")
try:
images_result = exe_result[0]['images']
except:
images_result = None
print("image result is none.")
else:
error_result = report
text_result = None
images_result = None
messages, new_image_clue_idx = update_messages_with_execute_content(len(image_path_list), messages, images_result, text_result, error_result, image_clue_idx)
image_clue_idx = new_image_clue_idx
code_execution_count += 1
# Generate next response part
response_text, pred_stop_reason = call_chatgpt_api(
args,
messages,
client,
max_tokens=max_tokens,
stop=["</code>"] if exe_code else None,
temperature=temperature
)
else:
final_response = response_text
messages = update_messages_with_text(messages, response_text)
break
return messages, final_response
def evaluate_single_data_multi_images(args, data, client, executor):
try:
prompt_template = args.prompt_template
prompt = args.prompt
exe_code = args.exe_code
max_tokens = args.max_tokens
except:
prompt_template = args['prompt_template']
prompt = args['prompt']
exe_code = args['exe_code']
max_tokens = args['max_tokens']
messages = process_prompt_init_multi_images(data["question"], data['image_path_list'], prompt_template, prompt)
# Generate initial response
response_text, pred_stop_reason = call_chatgpt_api(
args,
messages,
client,
max_tokens=max_tokens,
stop=["</code>"] if exe_code else None
)
# Handle response
final_response = response_text
code_execution_count = 0
image_clue_idx = data['image_nums_in_input']
while True:
# Check if code execution is needed
if exe_code and pred_stop_reason == "</code>":
# Extract code to execute
messages = update_messages_with_code(messages, response_text)
code_to_execute = response_text.split("```python")[-1].split("```")[0].strip()
# Execute code
exe_result = execute_codes([code_to_execute], messages, executor)[0][0]
if exe_result is None:
text_result = "None"
images_result = None
else:
output, report = exe_result
if report == "Done":
error_result = None
try:
text_result = exe_result[0]['text']
except:
text_result = None
print("text result is none.")
try:
images_result = exe_result[0]['images']
except:
images_result = None
print("image result is none.")
else:
error_result = report
text_result = None
images_result = None
messages, new_image_clue_idx = update_messages_with_execute_content(data['image_nums_in_input'], messages, images_result, text_result, error_result, image_clue_idx)
image_clue_idx = new_image_clue_idx
code_execution_count += 1
# Generate next response part
response_text, pred_stop_reason = call_chatgpt_api(
args,
messages,
client,
max_tokens=max_tokens,
stop=["</code>"] if exe_code else None
)
else:
final_response = response_text
messages = update_messages_with_text(messages, response_text)
break
return messages, final_response
def evaluate_single_data_video(args, data, client, executor):
try:
prompt_template = args.prompt_template
prompt = args.prompt
exe_code = args.exe_code
max_tokens = args.max_tokens
except:
prompt_template = args['prompt_template']
prompt = args['prompt']
exe_code = args['exe_code']
max_tokens = args['max_tokens']
messages = process_prompt_init_multi_images(data["question"], data['image_path_list'], prompt_template, prompt)
# Generate initial response
response_text, pred_stop_reason = call_chatgpt_api(
args,
messages,
client,
max_tokens=max_tokens,
stop=["</code>"] if exe_code else None
)
# Handle response
final_response = response_text
code_execution_count = 0
image_clue_idx = data['image_nums_in_input']
while True:
# Check if code execution is needed
if exe_code and pred_stop_reason == "</code>":
# Extract code to execute
messages = update_messages_with_code(messages, response_text)
code_to_execute = response_text.split("```python")[-1].split("```")[0].strip()
# Execute code
exe_result = execute_codes([code_to_execute], messages, executor)[0][0]
if exe_result is None:
text_result = "None"
images_result = None
else:
output, report = exe_result
if report == "Done":
error_result = None
try:
text_result = exe_result[0]['text']
except:
text_result = None
print("text result is none.")
try:
images_result = exe_result[0]['images']
except:
images_result = None
print("image result is none.")
else:
error_result = report
text_result = None
images_result = None
messages, new_image_clue_idx = update_messages_with_execute_content(data['image_nums_in_input'], messages, images_result, text_result, error_result, image_clue_idx)
image_clue_idx = new_image_clue_idx
code_execution_count += 1
# Generate next response part
response_text, pred_stop_reason = call_chatgpt_api(
args,
messages,
client,
max_tokens=max_tokens,
stop=["</code>"] if exe_code else None
)
else:
final_response = response_text
messages = update_messages_with_text(messages, response_text)
break
return messages, final_response
# New wrapper functions for safe execution with cleanup
def evaluate_batch_with_cleanup(args, data_list, client):
"""Wrapper function to ensure proper cleanup of resources when processing multiple items"""
# Initialize executor with process isolation
executor = PythonExecutor(use_process_isolation=True)
try:
results = []
for data in data_list:
try:
result = evaluate_single_data(args, data, client, executor)
results.append(result)
except Exception as e:
print(f"Error processing data item: {str(e)}")
results.append((None, f"Error: {str(e)}"))
# Reset the executor for the next item
executor.reset()
return results
finally:
# Ensure cleanup of persistent worker
del executor
def evaluate_single_with_cleanup(args, data, client):
"""Wrapper function for evaluating a single item with proper cleanup"""
# Initialize executor with process isolation
executor = PythonExecutor(use_process_isolation=True)
try:
result = evaluate_single_data(args, data, client, executor)
return result
finally:
# Ensure cleanup of persistent worker
del executor
def evaluate_multi_images_with_cleanup(args, data_list, client):
"""Wrapper function for multi-image evaluation with proper cleanup"""
# Initialize executor with process isolation
executor = PythonExecutor(use_process_isolation=True)
try:
results = []
for data in data_list:
try:
result = evaluate_single_data_multi_images(args, data, client, executor)
results.append(result)
except Exception as e:
print(f"Error processing multi-image data: {str(e)}")
results.append((None, f"Error: {str(e)}"))
# Reset the executor for the next item
executor.reset()
return results
finally:
# Ensure cleanup of persistent worker
del executor
def evaluate_video_with_cleanup(args, data_list, client):
"""Wrapper function for video evaluation with proper cleanup"""
# Initialize executor with process isolation
executor = PythonExecutor(use_process_isolation=True)
try:
results = []
for data in data_list:
try:
result = evaluate_single_data_video(args, data, client, executor)
results.append(result)
except Exception as e:
print(f"Error processing video data: {str(e)}")
results.append((None, f"Error: {str(e)}"))
# Reset the executor for the next item
executor.reset()
return results
finally:
# Ensure cleanup of persistent worker
del executor |