File size: 5,645 Bytes
c96e0d1 3ba7ae0 c96e0d1 78cdd85 c96e0d1 3ba7ae0 c96e0d1 3ba7ae0 78cdd85 3ba7ae0 c96e0d1 3ba7ae0 c96e0d1 78cdd85 3ba7ae0 78cdd85 3ba7ae0 c96e0d1 3ba7ae0 78cdd85 3ba7ae0 78cdd85 c96e0d1 3ba7ae0 c96e0d1 3ba7ae0 c96e0d1 3ba7ae0 c96e0d1 3ba7ae0 c96e0d1 3ba7ae0 78cdd85 3ba7ae0 78cdd85 3ba7ae0 c96e0d1 3ba7ae0 c96e0d1 3ba7ae0 78cdd85 c96e0d1 3ba7ae0 c96e0d1 3ba7ae0 78cdd85 c96e0d1 78cdd85 c96e0d1 78cdd85 c96e0d1 78cdd85 c96e0d1 78cdd85 c96e0d1 78cdd85 3ba7ae0 78cdd85 3ba7ae0 78cdd85 c96e0d1 3ba7ae0 c96e0d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
import os
import pandas as pd
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration
MODEL_REPO = "Ahmedhassan54/Image-Classification"
MODEL_FILE = "best_model.h5"
# Download model from Hugging Face Hub
def load_model_from_hf():
try:
logger.info("Attempting to load model...")
# Check if model exists in cache
model_path = hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILE,
cache_dir=".",
force_download=True # Ensure fresh download
)
logger.info(f"Model downloaded to: {model_path}")
# Load model
logger.info("Loading model...")
model = tf.keras.models.load_model(model_path)
logger.info("Model loaded successfully!")
return model
except Exception as e:
logger.error(f"Model loading failed: {str(e)}")
raise gr.Error(f"⚠️ Model loading failed: {str(e)}. Check the logs for details.")
# Load model when the app starts
try:
model = load_model_from_hf()
except Exception as e:
model = None
logger.error(f"Proceeding without model due to: {str(e)}")
def classify_image(image):
try:
logger.info("\nClassification started...")
# Debug: Check input type
logger.info(f"Input type: {type(image)}")
if image is None:
raise ValueError("No image provided")
# Convert image if needed
if isinstance(image, np.ndarray):
logger.info("Converting numpy array to PIL Image")
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
raise ValueError(f"Unexpected image type: {type(image)}")
# Preprocess image
logger.info("Preprocessing image...")
image = image.resize((150, 150))
image_array = np.array(image) / 255.0
# Add batch dimension
if len(image_array.shape) == 3:
image_array = np.expand_dims(image_array, axis=0)
logger.info(f"Image array shape: {image_array.shape}")
# Make prediction
logger.info("Making prediction...")
if model is None:
raise gr.Error("Model failed to load. Cannot make predictions.")
prediction = model.predict(image_array, verbose=0)
logger.info(f"Raw prediction: {prediction}")
confidence = float(prediction[0][0])
logger.info(f"Confidence score: {confidence}")
# Format outputs
label_output = {
"Cat": round(1 - confidence, 4),
"Dog": round(confidence, 4)
}
# Create dataframe for bar plot
plot_data = pd.DataFrame({
'Class': ['Cat', 'Dog'],
'Confidence': [1 - confidence, confidence]
})
logger.info("Classification successful!")
logger.info(f"Results: {label_output}")
return label_output, plot_data
except Exception as e:
logger.error(f"Error during classification: {str(e)}", exc_info=True)
raise gr.Error(f"🔴 Classification failed: {str(e)}")
# Custom CSS
css = """
.gradio-container {
background: linear-gradient(to right, #f5f7fa, #c3cfe2);
}
footer {
visibility: hidden
}
.error-message {
color: red !important;
font-weight: bold !important;
}
"""
# Build the interface
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🐾 Cat vs Dog Classifier 🦮
Upload an image to classify whether it's a cat or dog
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Image", type="pil")
with gr.Row():
submit_btn = gr.Button("Classify", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column():
label_output = gr.Label(label="Predictions", num_top_classes=2)
confidence_bar = gr.BarPlot(
pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}),
x="Class",
y="Confidence",
y_lim=[0,1],
title="Confidence Scores",
width=400,
height=300,
container=False
)
# Example images
gr.Examples(
examples=[
["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"],
["https://upload.wikimedia.org/wikipedia/commons/d/d9/Collage_of_Nine_Dogs.jpg"]
],
inputs=image_input,
outputs=[label_output, confidence_bar],
fn=classify_image,
cache_examples=True,
label="Try these examples:"
)
# Button actions
submit_btn.click(
fn=classify_image,
inputs=image_input,
outputs=[label_output, confidence_bar],
api_name="classify"
)
clear_btn.click(
fn=lambda: [None, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})],
inputs=None,
outputs=[image_input, confidence_bar],
show_progress=False
)
# Launch the app
if __name__ == "__main__":
demo.launch(debug=True) |