File size: 2,195 Bytes
f52233f
 
 
 
 
 
 
 
ae329be
 
f52233f
 
ae329be
f52233f
 
ae329be
f52233f
 
 
 
 
 
 
ae329be
f52233f
 
ae329be
f52233f
 
 
 
 
 
 
ae329be
f52233f
 
ae329be
f52233f
 
ae329be
 
 
 
f52233f
ae329be
f52233f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae329be
f52233f
 
 
 
 
 
 
 
 
 
 
 
 
ae329be
f52233f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
import os


MODEL_REPO = "Ahmedhassan54/Image-Classification" 
MODEL_FILE = "best_model.h5"


def load_model_from_hf():
    try:
       
        if not os.path.exists(MODEL_FILE):
            print("Downloading model from Hugging Face Hub...")
            model_path = hf_hub_download(
                repo_id=MODEL_REPO,
                filename=MODEL_FILE,
                cache_dir="."
            )
          
            os.system(f"cp {model_path} {MODEL_FILE}")
        
        
        model = tf.keras.models.load_model(MODEL_FILE)
        print("Model loaded successfully!")
        return model
    except Exception as e:
        print(f"Error loading model: {str(e)}")
        raise


model = load_model_from_hf()


def classify_image(image):
    try:
       
        image = image.resize((150, 150)) 
        image_array = np.array(image) / 255.0  
        image_array = np.expand_dims(image_array, axis=0) 
        
      
        prediction = model.predict(image_array)
        confidence = float(prediction[0][0])
        
        if confidence > 0.5:
            return {
                "Dog": confidence * 100,
                "Cat": (1 - confidence) * 100
            }
        else:
            return {
                "Cat": (1 - confidence) * 100,
                "Dog": confidence * 100
            }
    except Exception as e:
        return f"Error processing image: {str(e)}"


demo = gr.Interface(
    fn=classify_image,
    inputs=gr.Image(type="pil", label="Upload Image"),
    outputs=gr.Label(num_top_classes=2, label="Predictions"),
    title="🐱 Cat vs Dog Classifier 🐶",
    description="Upload an image to classify whether it's a cat or dog",
    examples=[
        ["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"],
        ["https://upload.wikimedia.org/wikipedia/commons/d/d9/Collage_of_Nine_Dogs.jpg"]
    ],
    allow_flagging="never"
)


if __name__ == "__main__":
    demo.launch(debug=True, server_port=7860)