File size: 4,517 Bytes
f52233f
 
ae329be
f52233f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae329be
f52233f
 
 
 
 
 
 
ae329be
 
f52233f
ae329be
f52233f
 
 
ae329be
f52233f
 
 
ae329be
f52233f
 
 
ae329be
f52233f
 
 
 
 
ae329be
f52233f
 
 
ae329be
f52233f
 
 
 
 
 
 
 
ae329be
f52233f
 
ae329be
f52233f
 
 
 
 
 
 
 
 
ae329be
f52233f
 
 
 
 
 
 
 
 
 
 
 
 
 
ae329be
f52233f
 
 
 
 
 
 
 
 
 
ae329be
f52233f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae329be
f52233f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae329be
f52233f
 
 
 
 
 
 
 
 
 
 
 
 
 
ae329be
f52233f
 
ae329be
f52233f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172



import tensorflow as tf
from tensorflow.keras import layers, models, callbacks
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt
import datetime
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import os
import zipfile
from google.colab import files
from shutil import move
from pathlib import Path

print("TensorFlow version:", tf.__version__)


uploaded = files.upload()
zip_filename = list(uploaded.keys())[0]

with zipfile.ZipFile(zip_filename, 'r') as zip_ref:
    zip_ref.extractall('extracted_dataset')




def organize_dataset(input_dir, output_dir):
 
    os.makedirs(os.path.join(output_dir, 'cat'), exist_ok=True)
    os.makedirs(os.path.join(output_dir, 'dog'), exist_ok=True)
    
   
    for file in Path(input_dir).glob('cat.*.jpg'):
        move(str(file), os.path.join(output_dir, 'cat', file.name))
    
    
    for file in Path(input_dir).glob('dog.*.jpg'):
        move(str(file), os.path.join(output_dir, 'dog', file.name))


input_path = 'extracted_dataset/custom_dataset/train'
output_path = 'organized_dataset/train'
organize_dataset(input_path, output_path)



IMG_SIZE = (150, 150)
BATCH_SIZE = 32


train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    validation_split=0.2  
)


train_generator = train_datagen.flow_from_directory(
    'organized_dataset/train',
    target_size=IMG_SIZE,
    batch_size=BATCH_SIZE,
    class_mode='binary',
    subset='training',
    shuffle=True
)


validation_generator = train_datagen.flow_from_directory(
    'organized_dataset/train',
    target_size=IMG_SIZE,
    batch_size=BATCH_SIZE,
    class_mode='binary',
    subset='validation',
    shuffle=True
)

class_names = list(train_generator.class_indices.keys())
print("\nDetected classes:", class_names)
print("Number of training samples:", train_generator.samples)
print("Number of validation samples:", validation_generator.samples)


plt.figure(figsize=(12, 9))
for i in range(9):
    img, label = next(train_generator)
    plt.subplot(3, 3, i+1)
    plt.imshow(img[i])
    plt.title(class_names[int(label[i])])
    plt.axis('off')
plt.suptitle("Sample Training Images")
plt.show()


def build_model(input_shape):
    model = models.Sequential([
        layers.Conv2D(32, (3,3), activation='relu', input_shape=input_shape),
        layers.MaxPooling2D((2,2)),
        
        layers.Conv2D(64, (3,3), activation='relu'),
        layers.MaxPooling2D((2,2)),
        
        layers.Conv2D(128, (3,3), activation='relu'),
        layers.MaxPooling2D((2,2)),
        
        layers.Flatten(),
        layers.Dense(512, activation='relu'),
        layers.Dropout(0.5),
        layers.Dense(1, activation='sigmoid')  # Binary output
    ])
    
    model.compile(
        optimizer='adam',
        loss='binary_crossentropy',
        metrics=['accuracy']
    )
    return model

model = build_model(input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3))
model.summary()


log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

callbacks = [
    callbacks.EarlyStopping(patience=5, restore_best_weights=True),
    callbacks.ModelCheckpoint('best_model.h5', save_best_only=True),
    callbacks.TensorBoard(log_dir=log_dir),
    callbacks.ReduceLROnPlateau(factor=0.1, patience=3)
]

history = model.fit(
    train_generator,
    steps_per_epoch=train_generator.samples // BATCH_SIZE,
    epochs=30,
    validation_data=validation_generator,
    validation_steps=validation_generator.samples // BATCH_SIZE,
    callbacks=callbacks
)


plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Train')
plt.plot(history.history['val_accuracy'], label='Validation')
plt.title('Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Train')
plt.plot(history.history['val_loss'], label='Validation')
plt.title('Loss')
plt.legend()
plt.show()


model.save('cat_dog_classifier.h5')


converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
with open('cat_dog.tflite', 'wb') as f:
    f.write(tflite_model)

print("\nModel saved in HDF5 and TFLite formats")