File size: 4,517 Bytes
f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f ae329be f52233f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import tensorflow as tf
from tensorflow.keras import layers, models, callbacks
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt
import datetime
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import os
import zipfile
from google.colab import files
from shutil import move
from pathlib import Path
print("TensorFlow version:", tf.__version__)
uploaded = files.upload()
zip_filename = list(uploaded.keys())[0]
with zipfile.ZipFile(zip_filename, 'r') as zip_ref:
zip_ref.extractall('extracted_dataset')
def organize_dataset(input_dir, output_dir):
os.makedirs(os.path.join(output_dir, 'cat'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'dog'), exist_ok=True)
for file in Path(input_dir).glob('cat.*.jpg'):
move(str(file), os.path.join(output_dir, 'cat', file.name))
for file in Path(input_dir).glob('dog.*.jpg'):
move(str(file), os.path.join(output_dir, 'dog', file.name))
input_path = 'extracted_dataset/custom_dataset/train'
output_path = 'organized_dataset/train'
organize_dataset(input_path, output_path)
IMG_SIZE = (150, 150)
BATCH_SIZE = 32
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
validation_split=0.2
)
train_generator = train_datagen.flow_from_directory(
'organized_dataset/train',
target_size=IMG_SIZE,
batch_size=BATCH_SIZE,
class_mode='binary',
subset='training',
shuffle=True
)
validation_generator = train_datagen.flow_from_directory(
'organized_dataset/train',
target_size=IMG_SIZE,
batch_size=BATCH_SIZE,
class_mode='binary',
subset='validation',
shuffle=True
)
class_names = list(train_generator.class_indices.keys())
print("\nDetected classes:", class_names)
print("Number of training samples:", train_generator.samples)
print("Number of validation samples:", validation_generator.samples)
plt.figure(figsize=(12, 9))
for i in range(9):
img, label = next(train_generator)
plt.subplot(3, 3, i+1)
plt.imshow(img[i])
plt.title(class_names[int(label[i])])
plt.axis('off')
plt.suptitle("Sample Training Images")
plt.show()
def build_model(input_shape):
model = models.Sequential([
layers.Conv2D(32, (3,3), activation='relu', input_shape=input_shape),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64, (3,3), activation='relu'),
layers.MaxPooling2D((2,2)),
layers.Conv2D(128, (3,3), activation='relu'),
layers.MaxPooling2D((2,2)),
layers.Flatten(),
layers.Dense(512, activation='relu'),
layers.Dropout(0.5),
layers.Dense(1, activation='sigmoid') # Binary output
])
model.compile(
optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy']
)
return model
model = build_model(input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3))
model.summary()
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
callbacks = [
callbacks.EarlyStopping(patience=5, restore_best_weights=True),
callbacks.ModelCheckpoint('best_model.h5', save_best_only=True),
callbacks.TensorBoard(log_dir=log_dir),
callbacks.ReduceLROnPlateau(factor=0.1, patience=3)
]
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // BATCH_SIZE,
epochs=30,
validation_data=validation_generator,
validation_steps=validation_generator.samples // BATCH_SIZE,
callbacks=callbacks
)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Train')
plt.plot(history.history['val_accuracy'], label='Validation')
plt.title('Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Train')
plt.plot(history.history['val_loss'], label='Validation')
plt.title('Loss')
plt.legend()
plt.show()
model.save('cat_dog_classifier.h5')
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
with open('cat_dog.tflite', 'wb') as f:
f.write(tflite_model)
print("\nModel saved in HDF5 and TFLite formats") |