Update README.md
Browse files
README.md
CHANGED
@@ -1,38 +1,38 @@
|
|
1 |
-
---
|
2 |
-
title: Cat vs Dog Classifier
|
3 |
-
emoji: π±πΆ
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: purple
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
-
|
13 |
-
# Cat vs Dog Image Classifier
|
14 |
-
|
15 |
-
A deep learning model that classifies images of cats and dogs with TensorFlow/Keras.
|
16 |
-
|
17 |
-
 <!-- Replace with actual demo GIF -->
|
18 |
-
|
19 |
-
## π Try it out!
|
20 |
-
|
21 |
-
[](https://huggingface.co/spaces/Ahmedhassan54/Image-Classification)
|
22 |
-
|
23 |
-
## π οΈ Technical Details
|
24 |
-
|
25 |
-
### Model Architecture
|
26 |
-
```python
|
27 |
-
Sequential([
|
28 |
-
Conv2D(32, (3,3), activation='relu', input_shape=(150, 150, 3)),
|
29 |
-
MaxPooling2D((2,2)),
|
30 |
-
Conv2D(64, (3,3), activation='relu'),
|
31 |
-
MaxPooling2D((2,2)),
|
32 |
-
Conv2D(128, (3,3), activation='relu'),
|
33 |
-
MaxPooling2D((2,2)),
|
34 |
-
Flatten(),
|
35 |
-
Dense(512, activation='relu'),
|
36 |
-
Dropout(0.5),
|
37 |
-
Dense(1, activation='sigmoid')
|
38 |
])
|
|
|
1 |
+
---
|
2 |
+
title: Cat vs Dog Classifier
|
3 |
+
emoji: π±πΆ
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.34.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
# Cat vs Dog Image Classifier
|
14 |
+
|
15 |
+
A deep learning model that classifies images of cats and dogs with TensorFlow/Keras.
|
16 |
+
|
17 |
+
 <!-- Replace with actual demo GIF -->
|
18 |
+
|
19 |
+
## π Try it out!
|
20 |
+
|
21 |
+
[](https://huggingface.co/spaces/Ahmedhassan54/Image-Classification)
|
22 |
+
|
23 |
+
## π οΈ Technical Details
|
24 |
+
|
25 |
+
### Model Architecture
|
26 |
+
```python
|
27 |
+
Sequential([
|
28 |
+
Conv2D(32, (3,3), activation='relu', input_shape=(150, 150, 3)),
|
29 |
+
MaxPooling2D((2,2)),
|
30 |
+
Conv2D(64, (3,3), activation='relu'),
|
31 |
+
MaxPooling2D((2,2)),
|
32 |
+
Conv2D(128, (3,3), activation='relu'),
|
33 |
+
MaxPooling2D((2,2)),
|
34 |
+
Flatten(),
|
35 |
+
Dense(512, activation='relu'),
|
36 |
+
Dropout(0.5),
|
37 |
+
Dense(1, activation='sigmoid')
|
38 |
])
|