Ahmedhassan54 commited on
Commit
032b177
Β·
verified Β·
1 Parent(s): 36586fd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -37
README.md CHANGED
@@ -1,38 +1,38 @@
1
- ---
2
- title: Cat vs Dog Classifier
3
- emoji: 🐱🐢
4
- colorFrom: blue
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 4.21.0
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- # Cat vs Dog Image Classifier
14
-
15
- A deep learning model that classifies images of cats and dogs with TensorFlow/Keras.
16
-
17
- ![Demo](https://example.com/demo.gif) <!-- Replace with actual demo GIF -->
18
-
19
- ## πŸš€ Try it out!
20
-
21
- [![Open in Spaces](https://img.shields.io/badge/πŸ€—-Open%20in%20Spaces-blue.svg)](https://huggingface.co/spaces/Ahmedhassan54/Image-Classification)
22
-
23
- ## πŸ› οΈ Technical Details
24
-
25
- ### Model Architecture
26
- ```python
27
- Sequential([
28
- Conv2D(32, (3,3), activation='relu', input_shape=(150, 150, 3)),
29
- MaxPooling2D((2,2)),
30
- Conv2D(64, (3,3), activation='relu'),
31
- MaxPooling2D((2,2)),
32
- Conv2D(128, (3,3), activation='relu'),
33
- MaxPooling2D((2,2)),
34
- Flatten(),
35
- Dense(512, activation='relu'),
36
- Dropout(0.5),
37
- Dense(1, activation='sigmoid')
38
  ])
 
1
+ ---
2
+ title: Cat vs Dog Classifier
3
+ emoji: 🐱🐢
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 5.34.2
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ # Cat vs Dog Image Classifier
14
+
15
+ A deep learning model that classifies images of cats and dogs with TensorFlow/Keras.
16
+
17
+ ![Demo](https://example.com/demo.gif) <!-- Replace with actual demo GIF -->
18
+
19
+ ## πŸš€ Try it out!
20
+
21
+ [![Open in Spaces](https://img.shields.io/badge/πŸ€—-Open%20in%20Spaces-blue.svg)](https://huggingface.co/spaces/Ahmedhassan54/Image-Classification)
22
+
23
+ ## πŸ› οΈ Technical Details
24
+
25
+ ### Model Architecture
26
+ ```python
27
+ Sequential([
28
+ Conv2D(32, (3,3), activation='relu', input_shape=(150, 150, 3)),
29
+ MaxPooling2D((2,2)),
30
+ Conv2D(64, (3,3), activation='relu'),
31
+ MaxPooling2D((2,2)),
32
+ Conv2D(128, (3,3), activation='relu'),
33
+ MaxPooling2D((2,2)),
34
+ Flatten(),
35
+ Dense(512, activation='relu'),
36
+ Dropout(0.5),
37
+ Dense(1, activation='sigmoid')
38
  ])