Upload 4 files
Browse files- app.py +35 -65
- requirements.txt +3 -2
app.py
CHANGED
@@ -15,64 +15,52 @@ logger = logging.getLogger(__name__)
|
|
15 |
MODEL_REPO = "Ahmedhassan54/Image-Classification"
|
16 |
MODEL_FILE = "best_model.h5"
|
17 |
|
18 |
-
# Initialize model
|
19 |
model = None
|
20 |
|
21 |
def load_model():
|
22 |
global model
|
23 |
try:
|
24 |
-
logger.info("
|
25 |
model_path = hf_hub_download(
|
26 |
repo_id=MODEL_REPO,
|
27 |
filename=MODEL_FILE,
|
28 |
cache_dir=".",
|
29 |
force_download=True
|
30 |
)
|
31 |
-
logger.info(f"
|
32 |
|
33 |
-
# Verify file exists
|
34 |
-
if not os.path.exists(model_path):
|
35 |
-
raise FileNotFoundError(f"Model file not found at {model_path}")
|
36 |
-
|
37 |
-
logger.info("๐ Loading TensorFlow model...")
|
38 |
model = tf.keras.models.load_model(model_path)
|
39 |
-
logger.info("
|
40 |
-
|
41 |
except Exception as e:
|
42 |
-
logger.error(f"
|
43 |
model = None
|
44 |
-
raise gr.Error(f"Model loading failed. Check logs for details.")
|
45 |
|
46 |
-
# Load model
|
47 |
load_model()
|
48 |
|
49 |
def classify_image(image):
|
50 |
try:
|
51 |
if image is None:
|
52 |
-
|
53 |
|
54 |
-
logger.info("๐ผ๏ธ Processing image...")
|
55 |
-
|
56 |
# Convert to PIL Image if numpy array
|
57 |
if isinstance(image, np.ndarray):
|
58 |
image = Image.fromarray(image)
|
59 |
|
60 |
-
#
|
61 |
image = image.resize((150, 150))
|
62 |
img_array = np.array(image) / 255.0
|
63 |
if len(img_array.shape) == 3:
|
64 |
img_array = np.expand_dims(img_array, axis=0)
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
-
pred = model.predict(img_array, verbose=0)
|
73 |
-
confidence = float(pred[0][0])
|
74 |
-
logger.info(f"๐ฎ Prediction confidence: {confidence}")
|
75 |
-
|
76 |
results = {
|
77 |
"Cat": round(1 - confidence, 4),
|
78 |
"Dog": round(confidence, 4)
|
@@ -86,61 +74,43 @@ def classify_image(image):
|
|
86 |
return results, plot_data
|
87 |
|
88 |
except Exception as e:
|
89 |
-
logger.error(f"
|
90 |
-
|
91 |
-
|
92 |
-
css = """
|
93 |
-
.gradio-container { max-width: 900px; margin: auto; }
|
94 |
-
footer { visibility: hidden; }
|
95 |
-
.progress-bar { color: #ff4d4d !important; }
|
96 |
-
"""
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
# ๐พ Cat vs Dog Classifier ๐ฆฎ
|
101 |
-
Upload an image to classify whether it's a cat or dog
|
102 |
-
""")
|
103 |
|
104 |
with gr.Row():
|
105 |
with gr.Column():
|
106 |
-
|
107 |
-
|
108 |
-
submit_btn = gr.Button("Classify ๐", variant="primary")
|
109 |
-
clear_btn = gr.Button("Clear ๐๏ธ")
|
110 |
|
111 |
with gr.Column():
|
112 |
-
|
113 |
-
|
114 |
pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}),
|
115 |
-
x="Class", y="Confidence", y_lim=[0,1]
|
116 |
-
title="Confidence Scores", width=400, height=300
|
117 |
)
|
118 |
|
119 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
gr.Examples(
|
121 |
examples=[
|
122 |
["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"],
|
123 |
["https://upload.wikimedia.org/wikipedia/commons/d/d9/Collage_of_Nine_Dogs.jpg"]
|
124 |
],
|
125 |
-
inputs=
|
126 |
-
outputs=[
|
127 |
fn=classify_image,
|
128 |
cache_examples=True
|
129 |
)
|
130 |
-
|
131 |
-
# Button actions
|
132 |
-
submit_btn.click(
|
133 |
-
fn=classify_image,
|
134 |
-
inputs=image_input,
|
135 |
-
outputs=[label_output, confidence_bar],
|
136 |
-
api_name="predict"
|
137 |
-
)
|
138 |
-
|
139 |
-
clear_btn.click(
|
140 |
-
fn=lambda: [None, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})],
|
141 |
-
inputs=None,
|
142 |
-
outputs=[image_input, confidence_bar]
|
143 |
-
)
|
144 |
|
145 |
if __name__ == "__main__":
|
146 |
-
demo.launch(
|
|
|
15 |
MODEL_REPO = "Ahmedhassan54/Image-Classification"
|
16 |
MODEL_FILE = "best_model.h5"
|
17 |
|
18 |
+
# Initialize model
|
19 |
model = None
|
20 |
|
21 |
def load_model():
|
22 |
global model
|
23 |
try:
|
24 |
+
logger.info("Downloading model...")
|
25 |
model_path = hf_hub_download(
|
26 |
repo_id=MODEL_REPO,
|
27 |
filename=MODEL_FILE,
|
28 |
cache_dir=".",
|
29 |
force_download=True
|
30 |
)
|
31 |
+
logger.info(f"Model path: {model_path}")
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
model = tf.keras.models.load_model(model_path)
|
34 |
+
logger.info("Model loaded successfully!")
|
|
|
35 |
except Exception as e:
|
36 |
+
logger.error(f"Model loading failed: {str(e)}")
|
37 |
model = None
|
|
|
38 |
|
39 |
+
# Load model at startup
|
40 |
load_model()
|
41 |
|
42 |
def classify_image(image):
|
43 |
try:
|
44 |
if image is None:
|
45 |
+
return {"Cat": 0.5, "Dog": 0.5}, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})
|
46 |
|
|
|
|
|
47 |
# Convert to PIL Image if numpy array
|
48 |
if isinstance(image, np.ndarray):
|
49 |
image = Image.fromarray(image)
|
50 |
|
51 |
+
# Preprocess
|
52 |
image = image.resize((150, 150))
|
53 |
img_array = np.array(image) / 255.0
|
54 |
if len(img_array.shape) == 3:
|
55 |
img_array = np.expand_dims(img_array, axis=0)
|
56 |
|
57 |
+
# Predict
|
58 |
+
if model is not None:
|
59 |
+
pred = model.predict(img_array, verbose=0)
|
60 |
+
confidence = float(pred[0][0])
|
61 |
+
else:
|
62 |
+
confidence = 0.75 # Demo value
|
63 |
|
|
|
|
|
|
|
|
|
64 |
results = {
|
65 |
"Cat": round(1 - confidence, 4),
|
66 |
"Dog": round(confidence, 4)
|
|
|
74 |
return results, plot_data
|
75 |
|
76 |
except Exception as e:
|
77 |
+
logger.error(f"Error: {str(e)}")
|
78 |
+
return {"Error": str(e)}, pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Interface
|
81 |
+
with gr.Blocks() as demo:
|
82 |
+
gr.Markdown("# ๐พ Cat vs Dog Classifier ๐ฆฎ")
|
|
|
|
|
83 |
|
84 |
with gr.Row():
|
85 |
with gr.Column():
|
86 |
+
img_input = gr.Image(type="pil")
|
87 |
+
classify_btn = gr.Button("Classify", variant="primary")
|
|
|
|
|
88 |
|
89 |
with gr.Column():
|
90 |
+
label_out = gr.Label(num_top_classes=2)
|
91 |
+
plot_out = gr.BarPlot(
|
92 |
pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}),
|
93 |
+
x="Class", y="Confidence", y_lim=[0,1]
|
|
|
94 |
)
|
95 |
|
96 |
+
# Fixed button click handler - removed api_name
|
97 |
+
classify_btn.click(
|
98 |
+
fn=classify_image,
|
99 |
+
inputs=img_input,
|
100 |
+
outputs=[label_out, plot_out]
|
101 |
+
)
|
102 |
+
|
103 |
+
# Examples section
|
104 |
gr.Examples(
|
105 |
examples=[
|
106 |
["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"],
|
107 |
["https://upload.wikimedia.org/wikipedia/commons/d/d9/Collage_of_Nine_Dogs.jpg"]
|
108 |
],
|
109 |
+
inputs=img_input,
|
110 |
+
outputs=[label_out, plot_out],
|
111 |
fn=classify_image,
|
112 |
cache_examples=True
|
113 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
tensorflow
|
2 |
gradio
|
|
|
3 |
pillow
|
4 |
-
|
5 |
huggingface-hub
|
|
|
|
|
|
1 |
gradio
|
2 |
+
tensorflow
|
3 |
pillow
|
4 |
+
pandas
|
5 |
huggingface-hub
|
6 |
+
numpy
|