Ahmedhassan54 commited on
Commit
a0d6908
ยท
verified ยท
1 Parent(s): 3ba7ae0

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -87
app.py CHANGED
@@ -15,112 +15,86 @@ logger = logging.getLogger(__name__)
15
  MODEL_REPO = "Ahmedhassan54/Image-Classification"
16
  MODEL_FILE = "best_model.h5"
17
 
18
- # Download model from Hugging Face Hub
19
- def load_model_from_hf():
 
 
 
20
  try:
21
- logger.info("Attempting to load model...")
22
-
23
- # Check if model exists in cache
24
  model_path = hf_hub_download(
25
  repo_id=MODEL_REPO,
26
  filename=MODEL_FILE,
27
  cache_dir=".",
28
- force_download=True # Ensure fresh download
29
  )
30
- logger.info(f"Model downloaded to: {model_path}")
31
 
32
- # Load model
33
- logger.info("Loading model...")
 
 
 
34
  model = tf.keras.models.load_model(model_path)
35
- logger.info("Model loaded successfully!")
36
- return model
37
 
38
  except Exception as e:
39
- logger.error(f"Model loading failed: {str(e)}")
40
- raise gr.Error(f"โš ๏ธ Model loading failed: {str(e)}. Check the logs for details.")
 
41
 
42
- # Load model when the app starts
43
- try:
44
- model = load_model_from_hf()
45
- except Exception as e:
46
- model = None
47
- logger.error(f"Proceeding without model due to: {str(e)}")
48
 
49
  def classify_image(image):
50
  try:
51
- logger.info("\nClassification started...")
52
-
53
- # Debug: Check input type
54
- logger.info(f"Input type: {type(image)}")
55
-
56
  if image is None:
57
- raise ValueError("No image provided")
 
 
58
 
59
- # Convert image if needed
60
  if isinstance(image, np.ndarray):
61
- logger.info("Converting numpy array to PIL Image")
62
  image = Image.fromarray(image)
63
- elif not isinstance(image, Image.Image):
64
- raise ValueError(f"Unexpected image type: {type(image)}")
65
-
66
- # Preprocess image
67
- logger.info("Preprocessing image...")
68
  image = image.resize((150, 150))
69
- image_array = np.array(image) / 255.0
70
-
71
- # Add batch dimension
72
- if len(image_array.shape) == 3:
73
- image_array = np.expand_dims(image_array, axis=0)
74
 
75
- logger.info(f"Image array shape: {image_array.shape}")
76
-
77
- # Make prediction
78
- logger.info("Making prediction...")
79
  if model is None:
80
- raise gr.Error("Model failed to load. Cannot make predictions.")
81
-
82
- prediction = model.predict(image_array, verbose=0)
83
- logger.info(f"Raw prediction: {prediction}")
84
-
85
- confidence = float(prediction[0][0])
86
- logger.info(f"Confidence score: {confidence}")
87
-
88
- # Format outputs
89
- label_output = {
90
  "Cat": round(1 - confidence, 4),
91
  "Dog": round(confidence, 4)
92
  }
93
 
94
- # Create dataframe for bar plot
95
  plot_data = pd.DataFrame({
96
  'Class': ['Cat', 'Dog'],
97
  'Confidence': [1 - confidence, confidence]
98
  })
99
 
100
- logger.info("Classification successful!")
101
- logger.info(f"Results: {label_output}")
102
-
103
- return label_output, plot_data
104
 
105
  except Exception as e:
106
- logger.error(f"Error during classification: {str(e)}", exc_info=True)
107
- raise gr.Error(f"๐Ÿ”ด Classification failed: {str(e)}")
108
 
109
- # Custom CSS
110
  css = """
111
- .gradio-container {
112
- background: linear-gradient(to right, #f5f7fa, #c3cfe2);
113
- }
114
- footer {
115
- visibility: hidden
116
- }
117
- .error-message {
118
- color: red !important;
119
- font-weight: bold !important;
120
- }
121
  """
122
 
123
- # Build the interface
124
  with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
125
  gr.Markdown("""
126
  # ๐Ÿพ Cat vs Dog Classifier ๐Ÿฆฎ
@@ -131,23 +105,18 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
131
  with gr.Column():
132
  image_input = gr.Image(label="Upload Image", type="pil")
133
  with gr.Row():
134
- submit_btn = gr.Button("Classify", variant="primary")
135
- clear_btn = gr.Button("Clear")
136
 
137
  with gr.Column():
138
- label_output = gr.Label(label="Predictions", num_top_classes=2)
139
  confidence_bar = gr.BarPlot(
140
  pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}),
141
- x="Class",
142
- y="Confidence",
143
- y_lim=[0,1],
144
- title="Confidence Scores",
145
- width=400,
146
- height=300,
147
- container=False
148
  )
149
 
150
- # Example images
151
  gr.Examples(
152
  examples=[
153
  ["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"],
@@ -156,8 +125,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
156
  inputs=image_input,
157
  outputs=[label_output, confidence_bar],
158
  fn=classify_image,
159
- cache_examples=True,
160
- label="Try these examples:"
161
  )
162
 
163
  # Button actions
@@ -165,16 +133,14 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
165
  fn=classify_image,
166
  inputs=image_input,
167
  outputs=[label_output, confidence_bar],
168
- api_name="classify"
169
  )
170
 
171
  clear_btn.click(
172
  fn=lambda: [None, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})],
173
  inputs=None,
174
- outputs=[image_input, confidence_bar],
175
- show_progress=False
176
  )
177
 
178
- # Launch the app
179
  if __name__ == "__main__":
180
  demo.launch(debug=True)
 
15
  MODEL_REPO = "Ahmedhassan54/Image-Classification"
16
  MODEL_FILE = "best_model.h5"
17
 
18
+ # Initialize model to None
19
+ model = None
20
+
21
+ def load_model():
22
+ global model
23
  try:
24
+ logger.info("โณ Downloading model...")
 
 
25
  model_path = hf_hub_download(
26
  repo_id=MODEL_REPO,
27
  filename=MODEL_FILE,
28
  cache_dir=".",
29
+ force_download=True
30
  )
31
+ logger.info(f"๐Ÿ“ Model path: {model_path}")
32
 
33
+ # Verify file exists
34
+ if not os.path.exists(model_path):
35
+ raise FileNotFoundError(f"Model file not found at {model_path}")
36
+
37
+ logger.info("๐Ÿ”„ Loading TensorFlow model...")
38
  model = tf.keras.models.load_model(model_path)
39
+ logger.info("โœ… Model loaded successfully!")
 
40
 
41
  except Exception as e:
42
+ logger.error(f"โŒ Model loading failed: {str(e)}")
43
+ model = None
44
+ raise gr.Error(f"Model loading failed. Check logs for details.")
45
 
46
+ # Load model when app starts
47
+ load_model()
 
 
 
 
48
 
49
  def classify_image(image):
50
  try:
 
 
 
 
 
51
  if image is None:
52
+ raise gr.Error("Please upload an image first")
53
+
54
+ logger.info("๐Ÿ–ผ๏ธ Processing image...")
55
 
56
+ # Convert to PIL Image if numpy array
57
  if isinstance(image, np.ndarray):
 
58
  image = Image.fromarray(image)
59
+
60
+ # Resize and normalize
 
 
 
61
  image = image.resize((150, 150))
62
+ img_array = np.array(image) / 255.0
63
+ if len(img_array.shape) == 3:
64
+ img_array = np.expand_dims(img_array, axis=0)
65
+
66
+ logger.info(f"๐Ÿ“Š Input shape: {img_array.shape}")
67
 
 
 
 
 
68
  if model is None:
69
+ raise gr.Error("Model not loaded - using demo mode")
70
+ return {"Cat": 0.5, "Dog": 0.5}, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})
71
+
72
+ pred = model.predict(img_array, verbose=0)
73
+ confidence = float(pred[0][0])
74
+ logger.info(f"๐Ÿ”ฎ Prediction confidence: {confidence}")
75
+
76
+ results = {
 
 
77
  "Cat": round(1 - confidence, 4),
78
  "Dog": round(confidence, 4)
79
  }
80
 
 
81
  plot_data = pd.DataFrame({
82
  'Class': ['Cat', 'Dog'],
83
  'Confidence': [1 - confidence, confidence]
84
  })
85
 
86
+ return results, plot_data
 
 
 
87
 
88
  except Exception as e:
89
+ logger.error(f"๐Ÿ’ฅ Classification error: {str(e)}")
90
+ raise gr.Error(f"Error processing image: {str(e)}")
91
 
 
92
  css = """
93
+ .gradio-container { max-width: 900px; margin: auto; }
94
+ footer { visibility: hidden; }
95
+ .progress-bar { color: #ff4d4d !important; }
 
 
 
 
 
 
 
96
  """
97
 
 
98
  with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
99
  gr.Markdown("""
100
  # ๐Ÿพ Cat vs Dog Classifier ๐Ÿฆฎ
 
105
  with gr.Column():
106
  image_input = gr.Image(label="Upload Image", type="pil")
107
  with gr.Row():
108
+ submit_btn = gr.Button("Classify ๐Ÿš€", variant="primary")
109
+ clear_btn = gr.Button("Clear ๐Ÿ—‘๏ธ")
110
 
111
  with gr.Column():
112
+ label_output = gr.Label(label="Predictions")
113
  confidence_bar = gr.BarPlot(
114
  pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}),
115
+ x="Class", y="Confidence", y_lim=[0,1],
116
+ title="Confidence Scores", width=400, height=300
 
 
 
 
 
117
  )
118
 
119
+ # Examples
120
  gr.Examples(
121
  examples=[
122
  ["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"],
 
125
  inputs=image_input,
126
  outputs=[label_output, confidence_bar],
127
  fn=classify_image,
128
+ cache_examples=True
 
129
  )
130
 
131
  # Button actions
 
133
  fn=classify_image,
134
  inputs=image_input,
135
  outputs=[label_output, confidence_bar],
136
+ api_name="predict"
137
  )
138
 
139
  clear_btn.click(
140
  fn=lambda: [None, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})],
141
  inputs=None,
142
+ outputs=[image_input, confidence_bar]
 
143
  )
144
 
 
145
  if __name__ == "__main__":
146
  demo.launch(debug=True)