Upload app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,9 @@ import os
|
|
7 |
import pandas as pd
|
8 |
import logging
|
9 |
|
|
|
|
|
|
|
10 |
# Setup logging
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
@@ -30,7 +33,9 @@ def load_model():
|
|
30 |
)
|
31 |
logger.info(f"Model path: {model_path}")
|
32 |
|
33 |
-
|
|
|
|
|
34 |
logger.info("Model loaded successfully!")
|
35 |
except Exception as e:
|
36 |
logger.error(f"Model loading failed: {str(e)}")
|
@@ -46,7 +51,7 @@ def classify_image(image):
|
|
46 |
|
47 |
# Convert to PIL Image if numpy array
|
48 |
if isinstance(image, np.ndarray):
|
49 |
-
image = Image.fromarray(image)
|
50 |
|
51 |
# Preprocess
|
52 |
image = image.resize((150, 150))
|
@@ -56,7 +61,8 @@ def classify_image(image):
|
|
56 |
|
57 |
# Predict
|
58 |
if model is not None:
|
59 |
-
|
|
|
60 |
confidence = float(pred[0][0])
|
61 |
else:
|
62 |
confidence = 0.75 # Demo value
|
@@ -75,7 +81,7 @@ def classify_image(image):
|
|
75 |
|
76 |
except Exception as e:
|
77 |
logger.error(f"Error: {str(e)}")
|
78 |
-
return {"Error": str(e)}, pd.DataFrame()
|
79 |
|
80 |
# Interface
|
81 |
with gr.Blocks() as demo:
|
@@ -93,9 +99,8 @@ with gr.Blocks() as demo:
|
|
93 |
x="Class", y="Confidence", y_lim=[0,1]
|
94 |
)
|
95 |
|
96 |
-
# Fixed button click handler - removed api_name
|
97 |
classify_btn.click(
|
98 |
-
|
99 |
inputs=img_input,
|
100 |
outputs=[label_out, plot_out]
|
101 |
)
|
@@ -113,4 +118,4 @@ with gr.Blocks() as demo:
|
|
113 |
)
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
-
demo.launch()
|
|
|
7 |
import pandas as pd
|
8 |
import logging
|
9 |
|
10 |
+
# Disable GPU if not available (for Hugging Face Spaces)
|
11 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
12 |
+
|
13 |
# Setup logging
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
logger = logging.getLogger(__name__)
|
|
|
33 |
)
|
34 |
logger.info(f"Model path: {model_path}")
|
35 |
|
36 |
+
# Explicitly disable GPU
|
37 |
+
with tf.device('/CPU:0'):
|
38 |
+
model = tf.keras.models.load_model(model_path)
|
39 |
logger.info("Model loaded successfully!")
|
40 |
except Exception as e:
|
41 |
logger.error(f"Model loading failed: {str(e)}")
|
|
|
51 |
|
52 |
# Convert to PIL Image if numpy array
|
53 |
if isinstance(image, np.ndarray):
|
54 |
+
image = Image.fromarray(image.astype('uint8'))
|
55 |
|
56 |
# Preprocess
|
57 |
image = image.resize((150, 150))
|
|
|
61 |
|
62 |
# Predict
|
63 |
if model is not None:
|
64 |
+
with tf.device('/CPU:0'):
|
65 |
+
pred = model.predict(img_array, verbose=0)
|
66 |
confidence = float(pred[0][0])
|
67 |
else:
|
68 |
confidence = 0.75 # Demo value
|
|
|
81 |
|
82 |
except Exception as e:
|
83 |
logger.error(f"Error: {str(e)}")
|
84 |
+
return {"Error": str(e)}, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})
|
85 |
|
86 |
# Interface
|
87 |
with gr.Blocks() as demo:
|
|
|
99 |
x="Class", y="Confidence", y_lim=[0,1]
|
100 |
)
|
101 |
|
|
|
102 |
classify_btn.click(
|
103 |
+
classify_image,
|
104 |
inputs=img_input,
|
105 |
outputs=[label_out, plot_out]
|
106 |
)
|
|
|
118 |
)
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|